PostgreSQL中ReadBuffer_common函数有什么作用
这篇文章主要介绍“PostgreSQL中ReadBuffer_common函数有什么作用”,在日常操作中,相信很多人在PostgreSQL中ReadBuffer_common函数有什么作用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PostgreSQL中ReadBuffer_common函数有什么作用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
在余杭等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供做网站、成都网站建设 网站设计制作按需网站设计,公司网站建设,企业网站建设,成都品牌网站建设,成都营销网站建设,成都外贸网站建设,余杭网站建设费用合理。
一、数据结构
BufferDesc
共享缓冲区的共享描述符(状态)数据
/* * Flags for buffer descriptors * buffer描述器标记 * * Note: TAG_VALID essentially means that there is a buffer hashtable * entry associated with the buffer's tag. * 注意:TAG_VALID本质上意味着有一个与缓冲区的标记相关联的缓冲区散列表条目。 */ //buffer header锁定 #define BM_LOCKED (1U << 22) /* buffer header is locked */ //数据需要写入(标记为DIRTY) #define BM_DIRTY (1U << 23) /* data needs writing */ //数据是有效的 #define BM_VALID (1U << 24) /* data is valid */ //已分配buffer tag #define BM_TAG_VALID (1U << 25) /* tag is assigned */ //正在R/W #define BM_IO_IN_PROGRESS (1U << 26) /* read or write in progress */ //上一个I/O出现错误 #define BM_IO_ERROR (1U << 27) /* previous I/O failed */ //开始写则变DIRTY #define BM_JUST_DIRTIED (1U << 28) /* dirtied since write started */ //存在等待sole pin的其他进程 #define BM_PIN_COUNT_WAITER (1U << 29) /* have waiter for sole pin */ //checkpoint发生,必须刷到磁盘上 #define BM_CHECKPOINT_NEEDED (1U << 30) /* must write for checkpoint */ //持久化buffer(不是unlogged或者初始化fork) #define BM_PERMANENT (1U << 31) /* permanent buffer (not unlogged, * or init fork) */ /* * BufferDesc -- shared descriptor/state data for a single shared buffer. * BufferDesc -- 共享缓冲区的共享描述符(状态)数据 * * Note: Buffer header lock (BM_LOCKED flag) must be held to examine or change * the tag, state or wait_backend_pid fields. In general, buffer header lock * is a spinlock which is combined with flags, refcount and usagecount into * single atomic variable. This layout allow us to do some operations in a * single atomic operation, without actually acquiring and releasing spinlock; * for instance, increase or decrease refcount. buf_id field never changes * after initialization, so does not need locking. freeNext is protected by * the buffer_strategy_lock not buffer header lock. The LWLock can take care * of itself. The buffer header lock is *not* used to control access to the * data in the buffer! * 注意:必须持有Buffer header锁(BM_LOCKED标记)才能检查或修改tag/state/wait_backend_pid字段. * 通常来说,buffer header lock是spinlock,它与标记位/参考计数/使用计数组合到单个原子变量中. * 这个布局设计允许我们执行原子操作,而不需要实际获得或者释放spinlock(比如,增加或者减少参考计数). * buf_id字段在初始化后不会出现变化,因此不需要锁定. * freeNext通过buffer_strategy_lock锁而不是buffer header lock保护. * LWLock可以很好的处理自己的状态. * 务请注意的是:buffer header lock不用于控制buffer中的数据访问! * * It's assumed that nobody changes the state field while buffer header lock * is held. Thus buffer header lock holder can do complex updates of the * state variable in single write, simultaneously with lock release (cleaning * BM_LOCKED flag). On the other hand, updating of state without holding * buffer header lock is restricted to CAS, which insure that BM_LOCKED flag * is not set. Atomic increment/decrement, OR/AND etc. are not allowed. * 假定在持有buffer header lock的情况下,没有人改变状态字段. * 持有buffer header lock的进程可以执行在单个写操作中执行复杂的状态变量更新, * 同步的释放锁(清除BM_LOCKED标记). * 换句话说,如果没有持有buffer header lock的状态更新,会受限于CAS, * 这种情况下确保BM_LOCKED没有被设置. * 比如原子的增加/减少(AND/OR)等操作是不允许的. * * An exception is that if we have the buffer pinned, its tag can't change * underneath us, so we can examine the tag without locking the buffer header. * Also, in places we do one-time reads of the flags without bothering to * lock the buffer header; this is generally for situations where we don't * expect the flag bit being tested to be changing. * 一种例外情况是如果我们已有buffer pinned,该buffer的tag不能改变(在本进程之下), * 因此不需要锁定buffer header就可以检查tag了. * 同时,在执行一次性的flags读取时不需要锁定buffer header. * 这种情况通常用于我们不希望正在测试的flag bit将被改变. * * We can't physically remove items from a disk page if another backend has * the buffer pinned. Hence, a backend may need to wait for all other pins * to go away. This is signaled by storing its own PID into * wait_backend_pid and setting flag bit BM_PIN_COUNT_WAITER. At present, * there can be only one such waiter per buffer. * 如果其他进程有buffer pinned,那么进程不能物理的从磁盘页面中删除items. * 因此,后台进程需要等待其他pins清除.这可以通过存储它自己的PID到wait_backend_pid中, * 并设置标记位BM_PIN_COUNT_WAITER. * 目前,每个缓冲区只能由一个等待进程. * * We use this same struct for local buffer headers, but the locks are not * used and not all of the flag bits are useful either. To avoid unnecessary * overhead, manipulations of the state field should be done without actual * atomic operations (i.e. only pg_atomic_read_u32() and * pg_atomic_unlocked_write_u32()). * 本地缓冲头部使用同样的结构,但并不需要使用locks,而且并不是所有的标记位都使用. * 为了避免不必要的负载,状态域的维护不需要实际的原子操作 * (比如只有pg_atomic_read_u32() and pg_atomic_unlocked_write_u32()) * * Be careful to avoid increasing the size of the struct when adding or * reordering members. Keeping it below 64 bytes (the most common CPU * cache line size) is fairly important for performance. * 在增加或者记录成员变量时,小心避免增加结构体的大小. * 保持结构体大小在64字节内(通常的CPU缓存线大小)对于性能是非常重要的. */ typedef struct BufferDesc { //buffer tag BufferTag tag; /* ID of page contained in buffer */ //buffer索引编号(0开始) int buf_id; /* buffer's index number (from 0) */ /* state of the tag, containing flags, refcount and usagecount */ //tag状态,包括flags/refcount和usagecount pg_atomic_uint32 state; //pin-count等待进程ID int wait_backend_pid; /* backend PID of pin-count waiter */ //空闲链表链中下一个空闲的buffer int freeNext; /* link in freelist chain */ //缓冲区内容锁 LWLock content_lock; /* to lock access to buffer contents */ } BufferDesc;
BufferTag
Buffer tag标记了buffer存储的是磁盘中哪个block
/* * Buffer tag identifies which disk block the buffer contains. * Buffer tag标记了buffer存储的是磁盘中哪个block * * Note: the BufferTag data must be sufficient to determine where to write the * block, without reference to pg_class or pg_tablespace entries. It's * possible that the backend flushing the buffer doesn't even believe the * relation is visible yet (its xact may have started before the xact that * created the rel). The storage manager must be able to cope anyway. * 注意:BufferTag必须足以确定如何写block而不需要参照pg_class或者pg_tablespace数据字典信息. * 有可能后台进程在刷新缓冲区的时候深圳不相信关系是可见的(事务可能在创建rel的事务之前). * 存储管理器必须可以处理这些事情. * * Note: if there's any pad bytes in the struct, INIT_BUFFERTAG will have * to be fixed to zero them, since this struct is used as a hash key. * 注意:如果在结构体中有填充的字节,INIT_BUFFERTAG必须将它们固定为零,因为这个结构体用作散列键. */ typedef struct buftag { //物理relation标识符 RelFileNode rnode; /* physical relation identifier */ ForkNumber forkNum; //相对于relation起始的块号 BlockNumber blockNum; /* blknum relative to begin of reln */ } BufferTag;
二、源码解读
ReadBuffer_common函数是所有ReadBuffer相关的通用逻辑,其实现逻辑如下:
1.初始化相关变量和执行相关判断(是否扩展isExtend?是否临时表isLocalBuf?)
2.如为临时表,则调用LocalBufferAlloc获取描述符;否则调用BufferAlloc获取描述符;
同时,设置是否在缓存命中的标记(变量found)
3.如在缓存中命中
3.1如非扩展buffer,更新统计信息,如有需要,锁定buffer并返回
3.2如为扩展buffer,则获取block
3.2.1如PageIsNew返回F,则报错
3.2.2如为本地buffer(临时表),则调整标记
3.2.3如非本地buffer,则清除BM_VALID标记
4.没有在缓存中命中,则获取block
4.1如为扩展buffer,通过填充0初始化buffer,调用smgrextend扩展
4.2如为普通buffer
4.2.1如模式为RBM_ZERO_AND_LOCK/RBM_ZERO_AND_CLEANUP_LOCK,填充0
4.2.2否则,通过smgr(存储管理器)读取block,如需要,则跟踪I/O时间,同时检查垃圾数据
5.已扩展了buffer或者已读取了block
5.1如需要,锁定buffer
5.2如为临时表,则调整标记;否则设置BM_VALID,中断IO,唤醒等待的进程
5.3更新统计信息
5.4返回buffer
/* * ReadBuffer_common -- common logic for all ReadBuffer variants * ReadBuffer_common -- 所有ReadBuffer相关的通用逻辑 * * *hit is set to true if the request was satisfied from shared buffer cache. * *hit设置为T,如shared buffer中已存在此buffer */ static Buffer ReadBuffer_common(SMgrRelation smgr, char relpersistence, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy, bool *hit) { BufferDesc *bufHdr;//buffer描述符 Block bufBlock;//相应的block bool found;//是否命中? bool isExtend;//扩展? bool isLocalBuf = SmgrIsTemp(smgr);//本地buffer? *hit = false; /* Make sure we will have room to remember the buffer pin */ //确保有空间存储buffer pin ResourceOwnerEnlargeBuffers(CurrentResourceOwner); //如为P_NEW,则需扩展 isExtend = (blockNum == P_NEW); //跟踪 TRACE_POSTGRESQL_BUFFER_READ_START(forkNum, blockNum, smgr->smgr_rnode.node.spcNode, smgr->smgr_rnode.node.dbNode, smgr->smgr_rnode.node.relNode, smgr->smgr_rnode.backend, isExtend); /* Substitute proper block number if caller asked for P_NEW */ //如调用方要求P_NEW,则替换适当的块号 if (isExtend) blockNum = smgrnblocks(smgr, forkNum); if (isLocalBuf) { //本地buffer(临时表) bufHdr = LocalBufferAlloc(smgr, forkNum, blockNum, &found); if (found) pgBufferUsage.local_blks_hit++; else if (isExtend) pgBufferUsage.local_blks_written++; else if (mode == RBM_NORMAL || mode == RBM_NORMAL_NO_LOG || mode == RBM_ZERO_ON_ERROR) pgBufferUsage.local_blks_read++; } else { //非临时表 /* * lookup the buffer. IO_IN_PROGRESS is set if the requested block is * not currently in memory. * 搜索buffer. * 如请求的block不在内存中,则IO_IN_PROGRESS设置为T */ //获取buffer描述符 bufHdr = BufferAlloc(smgr, relpersistence, forkNum, blockNum, strategy, &found); if (found) //在内存中命中 pgBufferUsage.shared_blks_hit++; else if (isExtend) //新的buffer pgBufferUsage.shared_blks_written++; else if (mode == RBM_NORMAL || mode == RBM_NORMAL_NO_LOG || mode == RBM_ZERO_ON_ERROR) //读取block pgBufferUsage.shared_blks_read++; } /* At this point we do NOT hold any locks. */ //这时候,我们还没有持有任何锁. /* if it was already in the buffer pool, we're done */ //---------- 如果buffer已在换冲池中,工作已完成 if (found) { //------------- buffer已在缓冲池中 //已在换冲池中 if (!isExtend) { //非扩展buffer /* Just need to update stats before we exit */ //在退出前,更新统计信息 *hit = true; VacuumPageHit++; if (VacuumCostActive) VacuumCostBalance += VacuumCostPageHit; TRACE_POSTGRESQL_BUFFER_READ_DONE(forkNum, blockNum, smgr->smgr_rnode.node.spcNode, smgr->smgr_rnode.node.dbNode, smgr->smgr_rnode.node.relNode, smgr->smgr_rnode.backend, isExtend, found); /* * In RBM_ZERO_AND_LOCK mode the caller expects the page to be * locked on return. * RBM_ZERO_AND_LOCK模式,调用者期望page锁定后才返回 */ if (!isLocalBuf) { //非临时表buffer if (mode == RBM_ZERO_AND_LOCK) LWLockAcquire(BufferDescriptorGetContentLock(bufHdr), LW_EXCLUSIVE); else if (mode == RBM_ZERO_AND_CLEANUP_LOCK) LockBufferForCleanup(BufferDescriptorGetBuffer(bufHdr)); } //根据buffer描述符读取buffer并返回buffer //#define BufferDescriptorGetBuffer(bdesc) ((bdesc)->buf_id + 1) return BufferDescriptorGetBuffer(bufHdr); } /* * We get here only in the corner case where we are trying to extend * the relation but we found a pre-existing buffer marked BM_VALID. * This can happen because mdread doesn't complain about reads beyond * EOF (when zero_damaged_pages is ON) and so a previous attempt to * read a block beyond EOF could have left a "valid" zero-filled * buffer. Unfortunately, we have also seen this case occurring * because of buggy Linux kernels that sometimes return an * lseek(SEEK_END) result that doesn't account for a recent write. In * that situation, the pre-existing buffer would contain valid data * that we don't want to overwrite. Since the legitimate case should * always have left a zero-filled buffer, complain if not PageIsNew. * 程序执行来到这里,进程尝试扩展relation但发现了先前已存在的标记为BM_VALID的buffer. * 这种情况之所以发生是因为mdread对于在EOF之后的读不会报错(zero_damaged_pages设置为ON), * 并且先前尝试读取EOF的block遗留了"valid"的已初始化(填充0)的buffer. * 不幸的是,我们同样发现因为Linux内核的bug(有时候会返回lseek/SEEK_END结果)导致这种情况. * 在这种情况下,先前已存在的buffer会存储有效的数据,这些数据不希望被覆盖. * 由于合法的情况下应该总是留下一个零填充的缓冲区,如果不是PageIsNew,则报错。 */ //获取block bufBlock = isLocalBuf ? LocalBufHdrGetBlock(bufHdr) : BufHdrGetBlock(bufHdr); if (!PageIsNew((Page) bufBlock)) //不是PageIsNew,则报错 ereport(ERROR, (errmsg("unexpected data beyond EOF in block %u of relation %s", blockNum, relpath(smgr->smgr_rnode, forkNum)), errhint("This has been seen to occur with buggy kernels; consider updating your system."))); /* * We *must* do smgrextend before succeeding, else the page will not * be reserved by the kernel, and the next P_NEW call will decide to * return the same page. Clear the BM_VALID bit, do the StartBufferIO * call that BufferAlloc didn't, and proceed. * 在成功执行前,必须执行smgrextend,否则的话page不能被内核保留, * 同时下一个P_NEW调用会确定返回同样的page. * 清除BM_VALID位,执行BufferAlloc没有执行的StartBufferIO调用,然后继续。 */ if (isLocalBuf) { //临时表 /* Only need to adjust flags */ //只需要调整标记 uint32 buf_state = pg_atomic_read_u32(&bufHdr->state); Assert(buf_state & BM_VALID); buf_state &= ~BM_VALID; pg_atomic_unlocked_write_u32(&bufHdr->state, buf_state); } else { //非临时表 /* * Loop to handle the very small possibility that someone re-sets * BM_VALID between our clearing it and StartBufferIO inspecting * it. * 循环,直至StartBufferIO返回T为止 */ do { uint32 buf_state = LockBufHdr(bufHdr); Assert(buf_state & BM_VALID); //清除BM_VALID标记 buf_state &= ~BM_VALID; UnlockBufHdr(bufHdr, buf_state); } while (!StartBufferIO(bufHdr, true)); } } //------------- buffer不在缓冲池中 /* * if we have gotten to this point, we have allocated a buffer for the * page but its contents are not yet valid. IO_IN_PROGRESS is set for it, * if it's a shared buffer. * 如果到了这个份上,我们已经为page分配了buffer,但其中的内容还没有生效. * 如果是共享内存,那么设置IO_IN_PROGRESS标记. * * Note: if smgrextend fails, we will end up with a buffer that is * allocated but not marked BM_VALID. P_NEW will still select the same * block number (because the relation didn't get any longer on disk) and * so future attempts to extend the relation will find the same buffer (if * it's not been recycled) but come right back here to try smgrextend * again. * 注意:如果smgrextend失败,我们将以一个已分配但为设置为BM_VALID的buffer结束这次调用 */ //验证 Assert(!(pg_atomic_read_u32(&bufHdr->state) & BM_VALID)); /* spinlock not needed */ //获取block bufBlock = isLocalBuf ? LocalBufHdrGetBlock(bufHdr) : BufHdrGetBlock(bufHdr); if (isExtend) { //-------- 扩展block /* new buffers are zero-filled */ //新buffers使用0填充 MemSet((char *) bufBlock, 0, BLCKSZ); /* don't set checksum for all-zero page */ //对于使用全0填充的page,不要设置checksum smgrextend(smgr, forkNum, blockNum, (char *) bufBlock, false); /* * NB: we're *not* doing a ScheduleBufferTagForWriteback here; * although we're essentially performing a write. At least on linux * doing so defeats the 'delayed allocation' mechanism, leading to * increased file fragmentation. * 注意:这里我们不会执行ScheduleBufferTagForWriteback.虽然我们实质上正在执行写操作. * 起码,在Linux平台,执行这个操作会破坏“延迟分配”机制,导致文件碎片. */ } else { //-------- 普通block /* * Read in the page, unless the caller intends to overwrite it and * just wants us to allocate a buffer. * 读取page,除非调用者期望覆盖它并且希望我们分配buffer. * */ if (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK) //如为RBM_ZERO_AND_LOCK或者RBM_ZERO_AND_CLEANUP_LOCK模式,初始化为0 MemSet((char *) bufBlock, 0, BLCKSZ); else { //其他模式 instr_time io_start,//io的起止时间 io_time; if (track_io_timing) INSTR_TIME_SET_CURRENT(io_start); //smgr(存储管理器)读取block smgrread(smgr, forkNum, blockNum, (char *) bufBlock); if (track_io_timing) { //需要跟踪io时间 INSTR_TIME_SET_CURRENT(io_time); INSTR_TIME_SUBTRACT(io_time, io_start); pgstat_count_buffer_read_time(INSTR_TIME_GET_MICROSEC(io_time)); INSTR_TIME_ADD(pgBufferUsage.blk_read_time, io_time); } /* check for garbage data */ //检查垃圾数据 if (!PageIsVerified((Page) bufBlock, blockNum)) { //如果page为通过验证 if (mode == RBM_ZERO_ON_ERROR || zero_damaged_pages) { //出错,则初始化 ereport(WARNING, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("invalid page in block %u of relation %s; zeroing out page", blockNum, relpath(smgr->smgr_rnode, forkNum)))); //初始化 MemSet((char *) bufBlock, 0, BLCKSZ); } else //出错,报错 ereport(ERROR, (errcode(ERRCODE_DATA_CORRUPTED), errmsg("invalid page in block %u of relation %s", blockNum, relpath(smgr->smgr_rnode, forkNum)))); } } } //--------- 已扩展了buffer或者已读取了block /* * In RBM_ZERO_AND_LOCK mode, grab the buffer content lock before marking * the page as valid, to make sure that no other backend sees the zeroed * page before the caller has had a chance to initialize it. * 在RBM_ZERO_AND_LOCK模式下,在标记page为有效之前获取buffer content lock, * 确保在调用者初始化之前没有其他进程看到已初始化为0的page * * Since no-one else can be looking at the page contents yet, there is no * difference between an exclusive lock and a cleanup-strength lock. (Note * that we cannot use LockBuffer() or LockBufferForCleanup() here, because * they assert that the buffer is already valid.) * 由于没有其他进程可以搜索page内容,因此获取独占锁和cleanup-strength锁没有区别. * (注意不能在这里使用LockBuffer()或者LockBufferForCleanup(),因为这些函数假定buffer有效) */ if ((mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK) && !isLocalBuf) { //锁定 LWLockAcquire(BufferDescriptorGetContentLock(bufHdr), LW_EXCLUSIVE); } if (isLocalBuf) { //临时表 /* Only need to adjust flags */ //只需要调整标记 uint32 buf_state = pg_atomic_read_u32(&bufHdr->state); buf_state |= BM_VALID; pg_atomic_unlocked_write_u32(&bufHdr->state, buf_state); } else { //普通表 /* Set BM_VALID, terminate IO, and wake up any waiters */ //设置BM_VALID,中断IO,唤醒等待的进程 TerminateBufferIO(bufHdr, false, BM_VALID); } //更新统计信息 VacuumPageMiss++; if (VacuumCostActive) VacuumCostBalance += VacuumCostPageMiss; //跟踪 TRACE_POSTGRESQL_BUFFER_READ_DONE(forkNum, blockNum, smgr->smgr_rnode.node.spcNode, smgr->smgr_rnode.node.dbNode, smgr->smgr_rnode.node.relNode, smgr->smgr_rnode.backend, isExtend, found); //返回buffer //#define BufferDescriptorGetBuffer(bdesc) ((bdesc)->buf_id + 1) return BufferDescriptorGetBuffer(bufHdr); }
三、跟踪分析
测试场景一:Block不在缓冲区中
脚本:
16:42:48 (xdb@[local]:5432)testdb=# select * from t1 limit 10;
启动gdb,设置断点
(gdb) b ReadBuffer_common Breakpoint 1 at 0x876e28: file bufmgr.c, line 711. (gdb) c Continuing. Breakpoint 1, ReadBuffer_common (smgr=0x2b7cce0, relpersistence=112 'p', forkNum=MAIN_FORKNUM, blockNum=0, mode=RBM_NORMAL, strategy=0x0, hit=0x7ffc7761dfab) at bufmgr.c:711 711 bool isLocalBuf = SmgrIsTemp(smgr); (gdb)
1.初始化相关变量和执行相关判断(是否扩展isExtend?是否临时表isLocalBuf?)
(gdb) n 713 *hit = false; (gdb) 716 ResourceOwnerEnlargeBuffers(CurrentResourceOwner); (gdb) 718 isExtend = (blockNum == P_NEW); (gdb) 720 TRACE_POSTGRESQL_BUFFER_READ_START(forkNum, blockNum, (gdb) 728 if (isExtend) (gdb) 731 if (isLocalBuf) (gdb) 745 bufHdr = BufferAlloc(smgr, relpersistence, forkNum, blockNum, (gdb)
2.调用BufferAlloc获取buffer描述符
(gdb) 747 if (found) (gdb) p *bufHdr $1 = {tag = {rnode = {spcNode = 1663, dbNode = 16402, relNode = 51439}, forkNum = MAIN_FORKNUM, blockNum = 0}, buf_id = 108, state = {value = 2248409089}, wait_backend_pid = 0, freeNext = -2, content_lock = {tranche = 54, state = { value = 536870912}, waiters = {head = 2147483647, tail = 2147483647}}} (gdb) p found $2 = false (gdb) (gdb) n 750 pgBufferUsage.shared_blks_read++; --> 更新统计信息 (gdb)
4.没有在缓存中命中,则获取block
756 if (found) (gdb) 856 Assert(!(pg_atomic_read_u32(&bufHdr->state) & BM_VALID)); /* spinlock not needed */ (gdb) 858 bufBlock = isLocalBuf ? LocalBufHdrGetBlock(bufHdr) : BufHdrGetBlock(bufHdr); (gdb) 860 if (isExtend) (gdb) p bufBlock $4 = (Block) 0x7fe8c240e380
4.2如为普通buffer
4.2.1如模式为RBM_ZERO_AND_LOCK/RBM_ZERO_AND_CLEANUP_LOCK,填充0
4.2.2否则,通过smgr(存储管理器)读取block,如需要,则跟踪I/O时间,同时检查垃圾数据
(gdb) p mode $5 = RBM_NORMAL (gdb) (gdb) n 880 if (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK) (gdb) 887 if (track_io_timing) (gdb) 890 smgrread(smgr, forkNum, blockNum, (char *) bufBlock); (gdb) 892 if (track_io_timing) (gdb) p *smgr $6 = {smgr_rnode = {node = {spcNode = 1663, dbNode = 16402, relNode = 51439}, backend = -1}, smgr_owner = 0x7fe8ee2bc7b8, smgr_targblock = 4294967295, smgr_fsm_nblocks = 4294967295, smgr_vm_nblocks = 4294967295, smgr_which = 0, md_num_open_segs = {1, 0, 0, 0}, md_seg_fds = {0x2b0dd78, 0x0, 0x0, 0x0}, next_unowned_reln = 0x0} (gdb) p forkNum $7 = MAIN_FORKNUM (gdb) p blockNum $8 = 0 (gdb) p (char *) bufBlock $9 = 0x7fe8c240e380 "\001" (gdb)
5.已扩展了buffer或者已读取了block
5.1如需要,锁定buffer
5.2如为临时表,则调整标记;否则设置BM_VALID,中断IO,唤醒等待的进程
(gdb) n 901 if (!PageIsVerified((Page) bufBlock, blockNum)) (gdb) 932 if ((mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK) && (gdb) n 938 if (isLocalBuf) (gdb) 949 TerminateBufferIO(bufHdr, false, BM_VALID); (gdb)
5.3更新统计信息
5.4返回buffer
(gdb) 952 VacuumPageMiss++; (gdb) 953 if (VacuumCostActive) (gdb) 956 TRACE_POSTGRESQL_BUFFER_READ_DONE(forkNum, blockNum, (gdb) 964 return BufferDescriptorGetBuffer(bufHdr); (gdb) 965 } (gdb)
buf为109
(gdb) ReadBufferExtended (reln=0x7fe8ee2bc7a8, forkNum=MAIN_FORKNUM, blockNum=0, mode=RBM_NORMAL, strategy=0x0) at bufmgr.c:666 666 if (hit) (gdb) 668 return buf; (gdb) p buf $10 = 109 (gdb)
测试场景二:Block已在缓冲区中
再次执行上面的SQL语句,这时候相应的block已读入到buffer中
(gdb) del Delete all breakpoints? (y or n) y (gdb) c Continuing. ^C Program received signal SIGINT, Interrupt. 0x00007fe8ec448903 in __epoll_wait_nocancel () at ../sysdeps/unix/syscall-template.S:81 81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS) (gdb) b ReadBuffer_common Breakpoint 2 at 0x876e28: file bufmgr.c, line 711. (gdb)
found变量为T
... (gdb) 745 bufHdr = BufferAlloc(smgr, relpersistence, forkNum, blockNum, (gdb) 747 if (found) (gdb) p found $11 = true (gdb) (gdb) n 748 pgBufferUsage.shared_blks_hit++; (gdb)
进入相应的逻辑
3.如在缓存中命中
3.1如非扩展buffer,更新统计信息,如有需要,锁定buffer并返回
3.2如为扩展buffer,则获取block
3.2.1如PageIsNew返回F,则报错
3.2.2如为本地buffer(临时表),则调整标记
3.2.3如非本地buffer,则清除BM_VALID标记
(gdb) 756 if (found) (gdb) 758 if (!isExtend) (gdb) 761 *hit = true; (gdb) 762 VacuumPageHit++; (gdb) 764 if (VacuumCostActive) (gdb) 767 TRACE_POSTGRESQL_BUFFER_READ_DONE(forkNum, blockNum, (gdb) 779 if (!isLocalBuf) (gdb) 781 if (mode == RBM_ZERO_AND_LOCK) (gdb) 784 else if (mode == RBM_ZERO_AND_CLEANUP_LOCK) (gdb) 788 return BufferDescriptorGetBuffer(bufHdr); (gdb) 965 } (gdb)
到此,关于“PostgreSQL中ReadBuffer_common函数有什么作用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
分享题目:PostgreSQL中ReadBuffer_common函数有什么作用
链接地址:http://hbruida.cn/article/phopio.html