golang如何实现延时任务
这篇文章主要讲解了“golang如何实现延时任务”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“golang如何实现延时任务”吧!
成都创新互联公司基于分布式IDC数据中心构建的平台为众多户提供四川联通机房服务器托管 四川大带宽租用 成都机柜租用 成都服务器租用。
实现思路
我们都知道,任何一种队列,实际上都是存在生产者和消费者两部分的。只不过,延时任务相对于普通队列,多了一个延时的特性罢了。
1、生产者
从生产者的角度上讲,当用户推送一个任务过来的时候,会携带着延迟执行的时间数值。为了让这个任务到预定时刻能执行,我们需要将这个任务放在内存里储存一段时间,并且时间是一维的,在不断增长。那么,我们用什么数据结构存储呢?
(1)选择一:map。由于map具有无序性,无法按照执行时间排序,我们无法保证取出的任务是否是当前时间点需要执行的,所以排除这个选项。
(2)选择二:channel。的确,channel有时候可以看作队列,然而,它的输出和输入严格遵循着“先进先出”的原则,遗憾的是,先进的任务未必就是先执行的,因此,channel也并不合适。
(3)选择三:slice。切片貌似可行,因为切片元素是具有有序性的,所以,如果我们能够按照执行时间的顺序排列好所有的切片元素,那么,每次只要读取切片的头元素(也可能是尾元素),就可以得到我们要的任务。
2、消费者
从消费者的角度来说,它最大的难点在于,如何让每个任务,在特定的时间点被消费。那么,针对每一个任务,我们如何实现,让它等待一段时间后再执行呢?
没错,就是timer。
总结下来,“切片+timer”的组合,应该是可以达到目的的。
步步为营
1、数据流
(1)用户调用InitDelayQueue(),初始化延时任务对象。
(2)开启协程,监听任务操作管道(add/delete信号),以及执行时间管道(timer.C信号)。
(3)用户发出add/delete信号。
(4)(2)中的协程捕捉到(3)中的信号,对任务列表进行变更。
(5)当任务执行的时间点到达的时候(timer.C管道有元素输出的时候),执行任务。
2、数据结构
(1)延时任务对象
// 延时任务对象
type DelayQueue struct {
tasks []*task // 存储任务列表的切片
add chan *task // 用户添加任务的管道信号
remove chan string // 用户删除任务的管道信号
waitRemoveTaskMapping map[string]struct{} // 等待删除的任务id列表
}
这里需要注意,有一个waitRemoveTaskMapping字段。由于要删除的任务,可能还在add管道中,没有及时更新到tasks字段中,所以,需要临时记录下客户要删除的任务id。
(2)任务对象
// 任务对象
type task struct {
id string // 任务id
execTime time.Time // 执行时间
f func() // 执行函数
}
3、初始化延时任务对象
// 初始化延时任务对象
func InitDelayQueue() *DelayQueue {
q := &DelayQueue{
add: make(chan *task, 10000),
remove: make(chan string, 100),
waitRemoveTaskMapping: make(map[string]struct{}),
}
return q
}
在这个过程中,我们需要对用户对任务的操作信号,以及任务的执行时间信号进行监听。
func (q *DelayQueue) start() {
for {
// to do something...
select {
case now := <-timer.C:
// 任务执行时间信号
// to do something...
case t := <-q.add:
// 任务推送信号
// to do something...
case id := <-q.remove:
// 任务删除信号
// to do something...
}
}
}
完善我们的初始化方法:
// 初始化延时任务对象
func InitDelayQueue() *DelayQueue {
q := &DelayQueue{
add: make(chan *task, 10000),
remove: make(chan string, 100),
waitRemoveTaskMapping: make(map[string]struct{}),
}
// 开启协程,监听任务相关信号
go q.start()
return q
}
4、生产者推送任务
生产者推送任务的时候,只需要将任务加到add管道中即可,在这里,我们生成一个任务id,并返回给用户。
// 用户推送任务
func (q *DelayQueue) Push(timeInterval time.Duration, f func()) string {
// 生成一个任务id,方便删除使用
id := genTaskId()
t := &task{
id: id,
execTime: time.Now().Add(timeInterval),
f: f,
}
// 将任务推到add管道中
q.add <- t
return id
}
5、任务推送信号的处理
在这里,我们要将用户推送的任务放到延时任务的tasks字段中。由于,我们需要将任务按照执行时间顺序排序,所以,我们需要找到新增任务在切片中的插入位置。又因为,插入之前的任务列表已经是有序的,所以,我们可以采用二分法处理。
// 使用二分法判断新增任务的插入位置
func (q *DelayQueue) getTaskInsertIndex(t *task, leftIndex, rightIndex int) (index int) {
if len(q.tasks) == 0 {
return
}
length := rightIndex - leftIndex
if q.tasks[leftIndex].execTime.Sub(t.execTime) >= 0 {
// 如果当前切片中最小的元素都超过了插入的优先级,则插入位置应该是最左边
return leftIndex
}
if q.tasks[rightIndex].execTime.Sub(t.execTime) <= 0 {
// 如果当前切片中最大的元素都没超过插入的优先级,则插入位置应该是最右边
return rightIndex + 1
}
if length == 1 && q.tasks[leftIndex].execTime.Before(t.execTime) && q.tasks[rightIndex].execTime.Sub(t.execTime) >= 0 {
// 如果插入的优先级刚好在仅有的两个优先级之间,则中间的位置就是插入位置
return leftIndex + 1
}
middleVal := q.tasks[leftIndex+length/2].execTime
// 这里用二分法递归的方式,一直寻找正确的插入位置
if t.execTime.Sub(middleVal) <= 0 {
return q.getTaskInsertIndex(t, leftIndex, leftIndex+length/2)
} else {
return q.getTaskInsertIndex(t, leftIndex+length/2, rightIndex)
}
}
找到正确的插入位置后,我们才能将任务准确插入:
// 将任务添加到任务切片列表中
func (q *DelayQueue) addTask(t *task) {
// 寻找新增任务的插入位置
insertIndex := q.getTaskInsertIndex(t, 0, len(q.tasks)-1)
// 找到了插入位置,更新任务列表
q.tasks = append(q.tasks, &task{})
copy(q.tasks[insertIndex+1:], q.tasks[insertIndex:])
q.tasks[insertIndex] = t
}
那么,在监听add管道的时候,我们直接调用上述addTask()即可。
func (q *DelayQueue) start() {
for {
// to do something...
select {
case now := <-timer.C:
// 任务执行时间信号
// to do something...
case t := <-q.add:
// 任务推送信号
q.addTask(t)
case id := <-q.remove:
// 任务删除信号
// to do something...
}
}
}
6、生产者删除任务
// 用户删除任务
func (q *DelayQueue) Delete(id string) {
q.remove <- id
}
7、任务删除信号的处理
在这里,我们可以遍历任务列表,根据删除任务的id找到其在切片中的对应index。
// 删除指定任务
func (q *DelayQueue) deleteTask(id string) {
deleteIndex := -1
for index, t := range q.tasks {
if t.id == id {
// 找到了在切片中需要删除的所以呢
deleteIndex = index
break
}
}
if deleteIndex == -1 {
// 如果没有找到删除的任务,说明任务还在add管道中,来不及更新到tasks中,这里我们就将这个删除id临时记录下来
// 注意,这里暂时不考虑,任务id非法的特殊情况
q.waitRemoveTaskMapping[id] = struct{}{}
return
}
if len(q.tasks) == 1 {
// 删除后,任务列表就没有任务了
q.tasks = []*task{}
return
}
if deleteIndex == len(q.tasks)-1 {
// 如果删除的是,任务列表的最后一个元素,则执行下列代码
q.tasks = q.tasks[:len(q.tasks)-1]
return
}
// 如果删除的是,任务列表的其他元素,则需要将deleteIndex之后的元素,全部向前挪动一位
copy(q.tasks[deleteIndex:len(q.tasks)-1], q.tasks[deleteIndex+1:len(q.tasks)-1])
q.tasks = q.tasks[:len(q.tasks)-1]
return
}
然后,我们可以完善start()方法了。
func (q *DelayQueue) start() {
for {
// to do something...
select {
case now := <-timer.C:
// 任务执行时间信号
// to do something...
case t := <-q.add:
// 任务推送信号
q.addTask(t)
case id := <-q.remove:
// 任务删除信号
q.deleteTask(id)
}
}
}
8、任务执行信号的处理
start()执行的时候,分成两种情况:任务列表为空,只需要监听add管道即可;任务列表不为空的时候,需要监听所有管道。任务执行信号,主要是依靠timer来实现,属于第二种情况。
func (q *DelayQueue) start() {
for {
if len(q.tasks) == 0 {
// 任务列表为空的时候,只需要监听add管道
select {
case t := <-q.add:
//添加任务
q.addTask(t)
}
continue
}
// 任务列表不为空的时候,需要监听所有管道
// 任务的等待时间=任务的执行时间-当前的时间
currentTask := q.tasks[0]
timer := time.NewTimer(currentTask.execTime.Sub(time.Now()))
select {
case now := <-timer.C:
// 任务执行信号
timer.Stop()
if _, isRemove := q.waitRemoveTaskMapping[currentTask.id]; isRemove {
// 之前客户已经发出过该任务的删除信号,因此需要结束任务,刷新任务列表
q.endTask()
delete(q.waitRemoveTaskMapping, currentTask.id)
continue
}
// 开启协程,异步执行任务
go q.execTask(currentTask, now)
// 任务结束,刷新任务列表
q.endTask()
case t := <-q.add:
// 任务推送信号
timer.Stop()
q.addTask(t)
case id := <-q.remove:
// 任务删除信号
timer.Stop()
q.deleteTask(id)
}
}
}
执行任务:
// 执行任务
func (q *DelayQueue) execTask(task *task, currentTime time.Time) {
if task.execTime.After(currentTime) {
// 如果当前任务的执行时间落后于当前时间,则不执行
return
}
// 执行任务
task.f()
return
}
结束任务,刷新任务列表:
// 一个任务去执行了,刷新任务列表
func (q *DelayQueue) endTask() {
if len(q.tasks) == 1 {
q.tasks = []*task{}
return
}
q.tasks = q.tasks[1:]
}
9、完整代码
delay_queue.go
package delay_queue
import (
"go.MongoDB.org/mongo-driver/bson/primitive"
"time"
)
// 延时任务对象
type DelayQueue struct {
tasks []*task // 存储任务列表的切片
add chan *task // 用户添加任务的管道信号
remove chan string // 用户删除任务的管道信号
waitRemoveTaskMapping map[string]struct{} // 等待删除的任务id列表
}
// 任务对象
type task struct {
id string // 任务id
execTime time.Time // 执行时间
f func() // 执行函数
}
// 初始化延时任务对象
func InitDelayQueue() *DelayQueue {
q := &DelayQueue{
add: make(chan *task, 10000),
remove: make(chan string, 100),
waitRemoveTaskMapping: make(map[string]struct{}),
}
// 开启协程,监听任务相关信号
go q.start()
return q
}
// 用户删除任务
func (q *DelayQueue) Delete(id string) {
q.remove <- id
}
// 用户推送任务
func (q *DelayQueue) Push(timeInterval time.Duration, f func()) string {
// 生成一个任务id,方便删除使用
id := genTaskId()
t := &task{
id: id,
execTime: time.Now().Add(timeInterval),
f: f,
}
// 将任务推到add管道中
q.add <- t
return id
}
// 监听各种任务相关信号
func (q *DelayQueue) start() {
for {
if len(q.tasks) == 0 {
// 任务列表为空的时候,只需要监听add管道
select {
case t := <-q.add:
//添加任务
q.addTask(t)
}
continue
}
// 任务列表不为空的时候,需要监听所有管道
// 任务的等待时间=任务的执行时间-当前的时间
currentTask := q.tasks[0]
timer := time.NewTimer(currentTask.execTime.Sub(time.Now()))
select {
case now := <-timer.C:
timer.Stop()
if _, isRemove := q.waitRemoveTaskMapping[currentTask.id]; isRemove {
// 之前客户已经发出过该任务的删除信号,因此需要结束任务,刷新任务列表
q.endTask()
delete(q.waitRemoveTaskMapping, currentTask.id)
continue
}
// 开启协程,异步执行任务
go q.execTask(currentTask, now)
// 任务结束,刷新任务列表
q.endTask()
case t := <-q.add:
// 添加任务
timer.Stop()
q.addTask(t)
case id := <-q.remove:
// 删除任务
timer.Stop()
q.deleteTask(id)
}
}
}
// 执行任务
func (q *DelayQueue) execTask(task *task, currentTime time.Time) {
if task.execTime.After(currentTime) {
// 如果当前任务的执行时间落后于当前时间,则不执行
return
}
// 执行任务
task.f()
return
}
// 一个任务去执行了,刷新任务列表
func (q *DelayQueue) endTask() {
if len(q.tasks) == 1 {
q.tasks = []*task{}
return
}
q.tasks = q.tasks[1:]
}
// 将任务添加到任务切片列表中
func (q *DelayQueue) addTask(t *task) {
// 寻找新增任务的插入位置
insertIndex := q.getTaskInsertIndex(t, 0, len(q.tasks)-1)
// 找到了插入位置,更新任务列表
q.tasks = append(q.tasks, &task{})
copy(q.tasks[insertIndex+1:], q.tasks[insertIndex:])
q.tasks[insertIndex] = t
}
// 删除指定任务
func (q *DelayQueue) deleteTask(id string) {
deleteIndex := -1
for index, t := range q.tasks {
if t.id == id {
// 找到了在切片中需要删除的所以呢
deleteIndex = index
break
}
}
if deleteIndex == -1 {
// 如果没有找到删除的任务,说明任务还在add管道中,来不及更新到tasks中,这里我们就将这个删除id临时记录下来
// 注意,这里暂时不考虑,任务id非法的特殊情况
q.waitRemoveTaskMapping[id] = struct{}{}
return
}
if len(q.tasks) == 1 {
// 删除后,任务列表就没有任务了
q.tasks = []*task{}
return
}
if deleteIndex == len(q.tasks)-1 {
// 如果删除的是,任务列表的最后一个元素,则执行下列代码
q.tasks = q.tasks[:len(q.tasks)-1]
return
}
// 如果删除的是,任务列表的其他元素,则需要将deleteIndex之后的元素,全部向前挪动一位
copy(q.tasks[deleteIndex:len(q.tasks)-1], q.tasks[deleteIndex+1:len(q.tasks)-1])
q.tasks = q.tasks[:len(q.tasks)-1]
return
}
// 寻找任务的插入位置
func (q *DelayQueue) getTaskInsertIndex(t *task, leftIndex, rightIndex int) (index int) {
// 使用二分法判断新增任务的插入位置
if len(q.tasks) == 0 {
return
}
length := rightIndex - leftIndex
if q.tasks[leftIndex].execTime.Sub(t.execTime) >= 0 {
// 如果当前切片中最小的元素都超过了插入的优先级,则插入位置应该是最左边
return leftIndex
}
if q.tasks[rightIndex].execTime.Sub(t.execTime) <= 0 {
// 如果当前切片中最大的元素都没超过插入的优先级,则插入位置应该是最右边
return rightIndex + 1
}
if length == 1 && q.tasks[leftIndex].execTime.Before(t.execTime) && q.tasks[rightIndex].execTime.Sub(t.execTime) >= 0 {
// 如果插入的优先级刚好在仅有的两个优先级之间,则中间的位置就是插入位置
return leftIndex + 1
}
middleVal := q.tasks[leftIndex+length/2].execTime
// 这里用二分法递归的方式,一直寻找正确的插入位置
if t.execTime.Sub(middleVal) <= 0 {
return q.getTaskInsertIndex(t, leftIndex, leftIndex+length/2)
} else {
return q.getTaskInsertIndex(t, leftIndex+length/2, rightIndex)
}
}
func genTaskId() string {
return primitive.NewObjectID().Hex()
}
测试代码:delay_queue_test.go
package delay_queue
import (
"fmt"
"testing"
"time"
)
func TestDelayQueue(t *testing.T) {
q := InitDelayQueue()
for i := 0; i < 100; i++ {
go func(i int) {
id := q.Push(time.Duration(i)*time.Second, func() {
fmt.Printf("%d秒后执行...\n", i)
return
})
if i%7 == 0 {
q.Delete(id)
}
}(i)
}
time.Sleep(time.Hour)
}
头脑风暴
上面的方案,的确实现了延时任务的效果,但是其中仍然有一些问题,仍然值得我们思考和优化。
1、按照上面的方案,如果大量延时任务的执行时间,集中在同一个时间点,会造成短时间内timer频繁地创建和销毁。
2、上述方案相比于time.AfterFunc()方法,我们需要在哪些场景下作出取舍。
3、如果服务崩溃或重启,如何去持久化队列中的任务。
感谢各位的阅读,以上就是“golang如何实现延时任务”的内容了,经过本文的学习后,相信大家对golang如何实现延时任务这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
本文名称:golang如何实现延时任务
本文路径:http://hbruida.cn/article/johosj.html