Kubernetes控制器之Service讲解(七)
一、背景介绍
我们这里准备三台机器,一台master,两台node,采用kubeadm的方式进行安装的,安装过程大家可以参照我之前的博文。
专注于为中小企业提供网站制作、成都做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业高邑免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了数千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
IP | 角色 | 版本 |
---|---|---|
192.168.1.200 | master | kubeadm v1.13.0 |
192.168.1.201 | node01 | kubeadm v1.13.0 |
192.168.1.202 | node02 | kubeadm v1.13.0 |
我们不应该期望 Kubernetes Pod 是健壮的,而是要假设 Pod 中的容器很可能因为各种原因发生故障而死掉。Deployment 等 controller 会通过动态创建和销毁 Pod 来保证应用整体的健壮性。换句话说,Pod 是脆弱的,但应用是健壮的。
每个 Pod 都有自己的 IP 地址。当 controller 用新 Pod 替代发生故障的 Pod 时,新 Pod 会分配到新的 IP 地址。这样就产生了一个问题:
如果一组 Pod 对外提供服务(比如 HTTP),它们的 IP 很有可能发生变化,那么客户端如何找到并访问这个服务呢?
Kubernetes 给出的解决方案是 Service。
二、创建 Service
Kubernetes Service 从逻辑上代表了一组 Pod,具体是哪些 Pod 则是由 label 来挑选。Service 有自己 IP,而且这个 IP 是不变的。客户端只需要访问 Service 的 IP,Kubernetes 则负责建立和维护 Service 与 Pod 的映射关系。无论后端 Pod 如何变化,对客户端不会有任何影响,因为 Service 没有变。
1、创建 Deployment
创建文件mytest-deploy.yaml
文件,增加如下内容:
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: mytest
spec:
replicas: 3
template:
metadata:
labels:
run: mytest
spec:
containers:
- name: mytest
image: wangzan18/mytest:v1
ports:
- containerPort: 80
创建我们的 Pod。
[root@master ~]# kubectl apply -f mytest-deploy.yaml
deployment.extensions/mytest created
[root@master ~]#
[root@master ~]# kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
mytest-88d46bf99-cd4zk 1/1 Running 0 70s 10.244.2.2 node02
mytest-88d46bf99-fsmcj 1/1 Running 0 70s 10.244.1.3 node01
mytest-88d46bf99-ntd5n 1/1 Running 0 70s 10.244.1.2 node01
Pod 分配了各自的 IP,这些 IP 只能被 Kubernetes Cluster 中的容器和节点访问。
2、创建 Service
创建文件mytest-svc.yaml
,新增如下内容:
apiVersion: v1
kind: Service
metadata:
name: mytest-svc
spec:
selector:
run: mytest
ports:
- port: 80
targetPort: 8080
创建service。
[root@master ~]# kubectl apply -f mytest-svc.yaml
service/mytest-svc created
[root@master ~]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 443/TCP 33m
mytest-svc ClusterIP 10.100.77.149 80/TCP 8s
mytest-svc
分配到一个 CLUSTER-IP 10.100.77.149
。可以通过该 IP 访问后端的 mytest Pod。
[root@master ~]# curl 10.100.77.149
Hello Kubernetes bootcamp! | Running on: mytest-88d46bf99-ntd5n | v=1
通过 kubectl describe
可以查看 mytest-svc
与 Pod 的对应关系。
[root@master ~]# kubectl describe svc mytest-svc
Name: mytest-svc
Namespace: default
Labels:
Annotations: kubectl.kubernetes.io/last-applied-configuration:
{"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"mytest-svc","namespace":"default"},"spec":{"ports":[{"port":80,"t...
Selector: run=mytest
Type: ClusterIP
IP: 10.100.77.149
Port: 80/TCP
TargetPort: 8080/TCP
Endpoints: 10.244.1.2:8080,10.244.1.3:8080,10.244.2.2:8080
Session Affinity: None
Events:
Endpoints 罗列了三个 Pod 的 IP 和端口。我们知道 Pod 的 IP 是在容器中配置的,那么 Service 的 Cluster IP 又是配置在哪里的呢?CLUSTER-IP 又是如何映射到 Pod IP 的呢?
三、Cluster IP 底层实现
1、开启 iptables
Service Cluster IP 是一个虚拟 IP,是由 Kubernetes 节点上的 iptables 规则管理的。
可以通过 iptables-save
命令打印出当前节点的 iptables 规则,因为输出较多,这里只截取与 httpd-svc
Cluster IP 10.100.77.149
相关的信息:
[root@master ~]# iptables-save |grep 10.100.77.149
-A KUBE-SERVICES ! -s 10.244.0.0/16 -d 10.100.77.149/32 -p tcp -m comment --comment "default/mytest-svc: cluster IP" -m tcp --dport 80 -j KUBE-MARK-MASQ
-A KUBE-SERVICES -d 10.100.77.149/32 -p tcp -m comment --comment "default/mytest-svc: cluster IP" -m tcp --dport 80 -j KUBE-SVC-XKNZ3BN47GCYFIPJ
这两条规则的含义是:
- 如果 Cluster 内的 Pod(源地址来自 10.244.0.0/16)要访问 mytest-svc,则允许。
- 其他源地址访问
mytest-svc
,跳转到规则KUBE-SVC-XKNZ3BN47GCYFIPJ
。
那我们查看一下KUBE-SVC-XKNZ3BN47GCYFIPJ
规则是什么,内容如下:
-A KUBE-SVC-XKNZ3BN47GCYFIPJ -m statistic --mode random --probability 0.33332999982 -j KUBE-SEP-6VUP2B3YLPPLYJJV
-A KUBE-SVC-XKNZ3BN47GCYFIPJ -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-ENVKJLELDEHDNVGK
-A KUBE-SVC-XKNZ3BN47GCYFIPJ -j KUBE-SEP-IZPSUB6K7QCCEPS3
- 1/3 的概率跳转到规则
KUBE-SEP-6VUP2B3YLPPLYJJV
。 - 1/3 的概率(剩下 2/3 的一半)跳转到规则
KUBE-SEP-ENVKJLELDEHDNVGK
。 - 1/3 的概率跳转到规则
KUBE-SEP-IZPSUB6K7QCCEPS3
。
上面的三条规则内容分别如下:
转发到Pod 10.244.1.2。
-A KUBE-SEP-6VUP2B3YLPPLYJJV -s 10.244.1.2/32 -j KUBE-MARK-MASQ
-A KUBE-SEP-6VUP2B3YLPPLYJJV -p tcp -m tcp -j DNAT --to-destination 10.244.1.2:8080
转发到Pod 10.244.1.3。
-A KUBE-SEP-ENVKJLELDEHDNVGK -s 10.244.1.3/32 -j KUBE-MARK-MASQ
-A KUBE-SEP-ENVKJLELDEHDNVGK -p tcp -m tcp -j DNAT --to-destination 10.244.1.3:8080
转发到Pod 10.244.2.2。
-A KUBE-SEP-IZPSUB6K7QCCEPS3 -s 10.244.2.2/32 -j KUBE-MARK-MASQ
-A KUBE-SEP-IZPSUB6K7QCCEPS3 -p tcp -m tcp -j DNAT --to-destination 10.244.2.2:8080
可以看到讲请求分别转发到了后端的三个 Pod。由此我们可以看出 iptables
将访问 Service 的流量转发到后端 Pod,而且使用类似轮询的负载均衡策略。
Cluster 的每一个节点都配置了相同的 iptables 规则,这样就确保了整个 Cluster 都能够通过 Service 的 Cluster IP 访问 Service。
开启 ipvs
默认缺省使用的是iptables
,如果kube-proxy
使用ipvs
进行转发的话,需要我们开启ipvs
,具体可以查看我之前的部署博文。
开启ipvs
之后的规则如下,看起来更加直观,建议大家启用ipvs
。
[root@master ~]# ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 172.17.0.1:32501 rr
-> 10.244.1.4:8080 Masq 1 0 0
-> 10.244.1.5:8080 Masq 1 0 0
-> 10.244.2.4:8080 Masq 1 0 0
TCP 192.168.1.200:32501 rr
-> 10.244.1.4:8080 Masq 1 0 0
-> 10.244.1.5:8080 Masq 1 0 0
-> 10.244.2.4:8080 Masq 1 0 0
TCP 10.96.0.1:443 rr
-> 192.168.1.200:6443 Masq 1 0 0
TCP 10.96.0.10:53 rr
-> 10.244.0.4:53 Masq 1 0 0
-> 10.244.0.5:53 Masq 1 0 0
TCP 10.99.143.93:80 rr
-> 10.244.1.4:8080 Masq 1 0 0
-> 10.244.1.5:8080 Masq 1 0 0
-> 10.244.2.4:8080 Masq 1 0 0
TCP 10.244.0.0:32501 rr
-> 10.244.1.4:8080 Masq 1 0 0
-> 10.244.1.5:8080 Masq 1 0 0
-> 10.244.2.4:8080 Masq 1 0 0
TCP 10.244.0.1:32501 rr
-> 10.244.1.4:8080 Masq 1 0 0
-> 10.244.1.5:8080 Masq 1 0 0
-> 10.244.2.4:8080 Masq 1 0 0
TCP 127.0.0.1:32501 rr
-> 10.244.1.4:8080 Masq 1 0 0
-> 10.244.1.5:8080 Masq 1 0 0
-> 10.244.2.4:8080 Masq 1 0 0
UDP 10.96.0.10:53 rr
-> 10.244.0.4:53 Masq 1 0 0
-> 10.244.0.5:53 Masq 1 0 0
四、DNS 访问 Service
在 Cluster 中,除了可以通过 Cluster IP 访问 Service,Kubernetes 还提供了更为方便的 DNS 访问。
kubeadm 部署时会默认安装 coredns 组件。
[root@master ~]# kubectl get deploy -n kube-system
NAME READY UP-TO-DATE AVAILABLE AGE
coredns 2/2 2 2 84m
coredns
是一个 DNS 服务器。每当有新的 Service 被创建,coredns
会添加该 Service 的 DNS 记录。Cluster 中的 Pod 可以通过 <SERVICE_NAME>.<NAMESPACE_NAME>
访问 Service。
比如可以用 mytest-svc.default
访问 Service mytest-svc
。
[root@master ~]# kubectl run busybox --rm -it --image=busybox /bin/sh
If you don't see a command prompt, try pressing enter.
/ # wget mytest-svc.default
Connecting to mytest-svc.default (10.100.77.149:80)
index.html 100% |*********************************************************| 70 0:00:00 ETA
/ #
如上所示,我们在一个临时的 busybox Pod 中验证了 DNS 的有效性。另外,由于这个 Pod 与 mytest-svc 同属于 default namespace,可以省略 default 直接用 mytest-svc 访问 Service。
五、外网访问 Service
除了 Cluster 内部可以访问 Service,很多情况我们也希望应用的 Service 能够暴露给 Cluster 外部。Kubernetes 提供了多种类型的 Service,默认是 ClusterIP。
ClusterIP
Service 通过 Cluster 内部的 IP 对外提供服务,只有 Cluster 内的节点和 Pod 可访问,这是默认的 Service 类型,前面实验中的 Service 都是 ClusterIP。
NodePort
Service 通过 Cluster 节点的静态端口对外提供服务。Cluster 外部可以通过 <NodeIP>:<NodePort>
访问 Service。
LoadBalancer
Service 利用 cloud provider 特有的 load balancer 对外提供服务,cloud provider 负责将 load balancer 的流量导向 Service。目前支持的 cloud provider 有 GCP、AWS、Azur 等。
下面我们来实践 NodePort,Service mytest-svc.yaml
的配置文件修改如下:
apiVersion: v1
kind: Service
metadata:
name: mytest-svc
spec:
type: NodePort
selector:
run: mytest
ports:
- port: 80
targetPort: 8080
添加 type: NodePort,重新创建 mytest-svc。
[root@master ~]# kubectl apply -f mytest-svc.yaml
service/mytest-svc configured
[root@master ~]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 443/TCP 98m
mytest-svc NodePort 10.100.77.149 80:31298/TCP 65m
Kubernetes 依然会为 mytest-svc 分配一个 ClusterIP,不同的是:PORT(S) 为 80:31298
。80 是 ClusterIP 监听的端口,31298 则是节点上监听的端口,我们可以使用节点的 IP:PORT 访问 Pod。Kubernetes 会从 30000-32767 中分配一个可用的端口,每个节点都会监听此端口并将请求转发给 Service。
[root@master ~]# curl 192.168.1.200:31298
Hello Kubernetes bootcamp! | Running on: mytest-88d46bf99-cd4zk | v=1
[root@master ~]# curl 192.168.1.201:31298
Hello Kubernetes bootcamp! | Running on: mytest-88d46bf99-cd4zk | v=1
[root@master ~]# curl 192.168.1.202:31298
Hello Kubernetes bootcamp! | Running on: mytest-88d46bf99-cd4zk | v=1
接下来我们深入探讨一个问题:Kubernetes 是如何将 <NodeIP>:<NodePort>
映射到 Pod 的呢?
与 ClusterIP 一样,也是借助了 iptables。与 ClusterIP 相比,每个节点的 iptables 中都增加了下面两条规则:
-A KUBE-NODEPORTS -p tcp -m comment --comment "default/mytest-svc:" -m tcp --dport 31298 -j KUBE-MARK-MASQ
-A KUBE-NODEPORTS -p tcp -m comment --comment "default/mytest-svc:" -m tcp --dport 31298 -j KUBE-SVC-XKNZ3BN47GCYFIPJ
规则的含义是:访问当前节点 31298 端口的请求会应用规则 KUBE-SVC-XKNZ3BN47GCYFIPJ
,内容为:
-A KUBE-SVC-XKNZ3BN47GCYFIPJ -m statistic --mode random --probability 0.33332999982 -j KUBE-SEP-6VUP2B3YLPPLYJJV
-A KUBE-SVC-XKNZ3BN47GCYFIPJ -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-ENVKJLELDEHDNVGK
-A KUBE-SVC-XKNZ3BN47GCYFIPJ -j KUBE-SEP-IZPSUB6K7QCCEPS3
其作用就是负载均衡到每一个 Pod。NodePort 默认是的随机选择,不过我们可以用 nodePort
指定某个特定端口。
apiVersion: v1
kind: Service
metadata:
name: mytest-svc
spec:
type: NodePort
selector:
run: mytest
ports:
- port: 80
nodePort: 30000
targetPort: 8080
nodePort
是节点上监听的端口。port
是 ClusterIP 上监听的端口。targetPort
是 Pod 监听的端口。
最终,Node 和 ClusterIP 在各自端口上接收到的请求都会通过 iptables 转发到 Pod 的 targetPort
。
网页名称:Kubernetes控制器之Service讲解(七)
链接URL:http://hbruida.cn/article/isjdcj.html