累积分布函数python 累积分布函数是什么意思
使用Python构造经验累积分布函数(ECDF)
对于一个样本序列 ,经验累积分布函数 (Empirical Cumulative Distribution Function)可被定义为
创新互联建站基于成都重庆香港及美国等地区分布式IDC机房数据中心构建的电信大带宽,联通大带宽,移动大带宽,多线BGP大带宽租用,是为众多客户提供专业成都多线服务器托管报价,主机托管价格性价比高,为金融证券行业服务器托管,ai人工智能服务器托管提供bgp线路100M独享,G口带宽及机柜租用的专业成都idc公司。
其中 是一个指示函数,如果 ,指示函数取值为1,否则取值为0,因此 能反映在样本中小于 的元素数量占比。
根据格利文科定理(Glivenko–Cantelli Theorem),如果一个样本满足独立同分布(IID),那么其经验累积分布函数 会趋近于真实的累积分布函数 。
首先定义一个类,命名为ECDF:
我们采用均匀分布(Uniform)进行验证,导入 uniform 包,然后进行两轮抽样,第一轮抽取10次,第二轮抽取1000次,比较输出的结果。
输出结果为:
而我们知道,在真实的0到1均匀分布中, 时, ,从模拟结果可以看出,样本量越大,最终的经验累积分布函数值也越接近于真实的累积分布函数值,因此格利文科定理得以证明。
怎样用python的matplotlib模块画累积分布图
下面的程序绘制随机变量X的累积分布函数和数组p的累加结果
pl.plot(t, X.cdf(t))
pl.plot(t2, np.add.accumulate(p)*(t2[1]-t2[0]))
如何使用python做统计分析
Shape Parameters
形态参数
While a general continuous random variable can be shifted and scaled
with the loc and scale parameters, some distributions require additional
shape parameters. For instance, the gamma distribution, with density
γ(x,a)=λ(λx)a−1Γ(a)e−λx,
requires the shape parameter a. Observe that setting λ can be obtained by setting the scale keyword to 1/λ.
虽然一个一般的连续随机变量可以被位移和伸缩通过loc和scale参数,但一些分布还需要额外的形态参数。作为例子,看到这个伽马分布,这是它的密度函数
γ(x,a)=λ(λx)a−1Γ(a)e−λx,
要求一个形态参数a。注意到λ的设置可以通过设置scale关键字为1/λ进行。
Let’s check the number and name of the shape parameters of the gamma
distribution. (We know from the above that this should be 1.)
让我们检查伽马分布的形态参数的名字的数量。(我们知道从上面知道其应该为1)
from scipy.stats import gamma
gamma.numargs
1
gamma.shapes
'a'
Now we set the value of the shape variable to 1 to obtain the
exponential distribution, so that we compare easily whether we get the
results we expect.
现在我们设置形态变量的值为1以变成指数分布。所以我们可以容易的比较是否得到了我们所期望的结果。
gamma(1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
Notice that we can also specify shape parameters as keywords:
注意我们也可以以关键字的方式指定形态参数:
gamma(a=1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
Freezing a Distribution
冻结分布
Passing the loc and scale keywords time and again can become quite
bothersome. The concept of freezing a RV is used to solve such problems.
不断地传递loc与scale关键字最终会让人厌烦。而冻结RV的概念被用来解决这个问题。
rv = gamma(1, scale=2.)
By using rv we no longer have to include the scale or the shape
parameters anymore. Thus, distributions can be used in one of two ways,
either by passing all distribution parameters to each method call (such
as we did earlier) or by freezing the parameters for the instance of the
distribution. Let us check this:
通过使用rv我们不用再更多的包含scale与形态参数在任何情况下。显然,分布可以被多种方式使用,我们可以通过传递所有分布参数给对方法的每次调用(像我们之前做的那样)或者可以对一个分布对象冻结参数。让我们看看是怎么回事:
rv.mean(), rv.std()
(2.0, 2.0)
This is indeed what we should get.
这正是我们应该得到的。
Broadcasting
广播
The basic methods pdf and so on satisfy the usual numpy broadcasting
rules. For example, we can calculate the critical values for the upper
tail of the t distribution for different probabilites and degrees of
freedom.
像pdf这样的简单方法满足numpy的广播规则。作为例子,我们可以计算t分布的右尾分布的临界值对于不同的概率值以及自由度。
stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])
array([[ 1.37218364, 1.81246112, 2.76376946],
[ 1.36343032, 1.79588482, 2.71807918]])
Here, the first row are the critical values for 10 degrees of freedom
and the second row for 11 degrees of freedom (d.o.f.). Thus, the
broadcasting rules give the same result of calling isf twice:
这里,第一行是以10自由度的临界值,而第二行是以11为自由度的临界值。所以,广播规则与下面调用了两次isf产生的结果相同。
stats.t.isf([0.1, 0.05, 0.01], 10)
array([ 1.37218364, 1.81246112, 2.76376946])
stats.t.isf([0.1, 0.05, 0.01], 11)
array([ 1.36343032, 1.79588482, 2.71807918])
If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of
degrees of freedom i.e., [10, 11, 12], have the same array shape, then
element wise matching is used. As an example, we can obtain the 10% tail
for 10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f.
by calling
但是如果概率数组,如[0.1,0.05,0.01]与自由度数组,如[10,11,12]具有相同的数组形态,则元素对应捕捉被作用,我们可以分别得到10%,5%,1%尾的临界值对于10,11,12的自由度。
stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])
array([ 1.37218364, 1.79588482, 2.68099799])
Specific Points for Discrete Distributions
离散分布的特殊之处
Discrete distribution have mostly the same basic methods as the
continuous distributions. However pdf is replaced the probability mass
function pmf, no estimation methods, such as fit, are available, and
scale is not a valid keyword parameter. The location parameter, keyword
loc can still be used to shift the distribution.
离散分布的简单方法大多数与连续分布很类似。当然像pdf被更换为密度函数pmf,没有估计方法,像fit是可用的。而scale不是一个合法的关键字参数。Location参数,关键字loc则仍然可以使用用于位移。
The computation of the cdf requires some extra attention. In the case of
continuous distribution the cumulative distribution function is in most
standard cases strictly monotonic increasing in the bounds (a,b) and
has therefore a unique inverse. The cdf of a discrete distribution,
however, is a step function, hence the inverse cdf, i.e., the percent
point function, requires a different definition:
ppf(q) = min{x : cdf(x) = q, x integer}
Cdf的计算要求一些额外的关注。在连续分布的情况下,累积分布函数在大多数标准情况下是严格递增的,所以有唯一的逆。而cdf在离散分布,无论如何,是阶跃函数,所以cdf的逆,分位点函数,要求一个不同的定义:
ppf(q) = min{x : cdf(x) = q, x integer}
For further info, see the docs here.
为了更多信息可以看这里。
We can look at the hypergeometric distribution as an example
from scipy.stats import hypergeom
[M, n, N] = [20, 7, 12]
我们可以看这个超几何分布的例子
from scipy.stats import hypergeom
[M, n, N] = [20, 7, 12]
If we use the cdf at some integer points and then evaluate the ppf at
those cdf values, we get the initial integers back, for example
如果我们使用在一些整数点使用cdf,它们的cdf值再作用ppf会回到开始的值。
x = np.arange(4)*2
x
array([0, 2, 4, 6])
prb = hypergeom.cdf(x, M, n, N)
prb
array([ 0.0001031991744066, 0.0521155830753351, 0.6083591331269301,
0.9897832817337386])
hypergeom.ppf(prb, M, n, N)
array([ 0., 2., 4., 6.])
If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:
如果我们使用的值不是cdf的函数值,则我们得到一个更高的值。
hypergeom.ppf(prb + 1e-8, M, n, N)
array([ 1., 3., 5., 7.])
hypergeom.ppf(prb - 1e-8, M, n, N)
array([ 0., 2., 4., 6.])
网站标题:累积分布函数python 累积分布函数是什么意思
URL标题:http://hbruida.cn/article/hgcdso.html