Linux查看ARP命令 linux中arp命令

linux中怎么查看arp-1.7.0安装成功了没

linux中查看arp-1.7.0安装成功方法如下。

创新互联服务项目包括襄阳网站建设、襄阳网站制作、襄阳网页制作以及襄阳网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,襄阳网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到襄阳省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

1、rpm包安装的用rpm-qa|grep软件或者包的名字。

2、以deb包安装的用dpkg-l|grep软件或者包的名字。

3、yum方法安装的,用yumlistinstalled查找。

TCP-IP协议详解(3) IP/ARP/RIP/BGP协议

网络层(network layer)是实现互联网的最重要的一层。正是在网络层面上,各个局域网根据IP协议相互连接,最终构成覆盖全球的Internet。更高层的协议,无论是TCP还是UDP,必须通过网络层的IP数据包(datagram)来传递信息。操作系统也会提供该层的socket,从而允许用户直接操作IP包。

IP数据包是符合IP协议的信息(也就是0/1序列),我们后面简称IP数据包为IP包。IP包分为头部(header)和数据(Data)两部分。数据部分是要传送的信息,头部是为了能够实现传输而附加的信息(这与以太网帧的头部功能相类似,如果对帧感到陌生,可参看 小喇叭 一文)。

IP协议可以分为IPv4和IPv6两种。IPv6是改进版本,用于在未来取代IPv4协议。出于本文的目的,我们可以暂时忽略两者的区别,只以IPv4为例。下面是IPv4的格式

IPv4包 我们按照4 bytes将整个序列折叠,以便更好的显示

与帧类似,IP包的头部也有多个区域。我们将注意力放在红色的发出地(source address)和目的地(destination address)。它们都是IP地址。IPv4的地址为4 bytes的长度(也就是32位)。我们通常将IPv4的地址分为四个十进制的数,每个数的范围为0-255,比如192.0.0.1就是一个IP地址。填写在IP包头部的是该地址的二进制形式。

IP地址是全球地址,它可以识别”社区”(局域网)和”房子”(主机)。这是通过将IP地址分类实现的。

IP class    From          To                Subnet Mask

A           1.0.0.0       126.255.255.255    255.0.0.0

B           128.0.0.0     191.255.255.255    255.255.0.0

C           192.0.0.0     223.255.255.255    255.255.255.0

每个IP地址的32位分为前后两部分,第一部分用来区分局域网,第二个部分用来区分该局域网的主机。子网掩码(Subnet Mask)告诉我们这两部分的分界线,比如255.0.0.0(也就是8个1和24个0)表示前8位用于区分局域网,后24位用于区分主机。由于A、B、C分类是已经规定好的,所以当一个IP地址属于B类范围时,我们就知道它的前16位和后16位分别表示局域网和主机。

网络协议概览 中说,IP地址是分配给每个房子(计算机)的“邮编”。但这个说法并不精确。IP地址实际上识别的是网卡(NIC, Network Interface Card)。网卡是计算机的一个硬件,它在接收到网路信息之后,将信息交给计算机(处理器/内存)。当计算机需要发送信息的时候,也要通过网卡发送。一台计算机可以有不只一个网卡,比如笔记本就有一个以太网卡和一个WiFi网卡。计算机在接收或者发送信息的时候,要先决定想要通过哪个网卡。

NIC

路由器(router)实际上就是一台配备有多个网卡的专用电脑。它让网卡接入到不同的网络中,这样,就构成在 网络协议概览 中所说的邮局。比如下图中位于中间位置的路由器有两个网卡,地址分别为199.165.145.17和199.165.146.3。它们分别接入到两个网络:199.165.145和199.165.146。

IP包的传输要通过路由器的接力。每一个主机和路由中都存有一个路由表(routing table)。路由表根据目的地的IP地址,规定了等待发送的IP包所应该走的路线。就好像下图的路标,如果地址是“东京”,那么请转左;如果地址是“悉尼”,那么请向右。

A real world routing table

比如我们从主机145.17生成发送到146.21的IP包:铺开信纸,写好信的开头(剩下数据部分可以是TCP包,可以是UDP包,也可以是任意乱写的字,我们暂时不关心),注明目的地IP地址(199.165.146.21)和发出地IP地址(199.165.145.17)。主机145.17随后参照自己的routing table,里面有三行记录:

145.17 routing table (Genmask为子网掩码,Iface用于说明使用哪个网卡接口)

Destination        Gateway             Genmask             Iface

199.165.145.0      0.0.0.0             255.255.255.0       eth0

0.0.0.0            199.165.145.17      0.0.0.0             eth0

这里有两行记录。

第一行表示,如果IP目的地是199.165.145.0这个网络的主机,那么只需要自己在eth0上的网卡直接传送(“本地社区”:直接送达),不需要前往router(Gateway 0.0.0.0 = “本地送信”)。

第二行表示所有不符合第一行的IP目的地,都应该送往Gateway 199.165.145.17,也就是中间router接入在eth0的网卡IP地址(邮局在eth0的分支)。

我们的IP包目的地为199.165.146.21,不符合第一行,所以按照第二行,发送到中间的router。主机145.17会将IP包放入帧的payload,并在帧的头部写上199.165.145.17对应的MAC地址,这样,就可以按照 以太网与wifi协议 中的方法在局域网中传送了。

中间的router在收到IP包之后(实际上是收到以太协议的帧,然后从帧中的payload读取IP包),提取目的地IP地址,然后对照自己的routing table:

Destination        Gateway             Genmask             Iface

199.165.145.0      0.0.0.0             255.255.255.0       eth0

199.165.146.0      0.0.0.0             255.255.255.0       eth1

0.0.0.0            199.165.146.8       0.0.0.0             eth1

从前两行我们看到,由于router横跨eth0和eth1两个网络,它可以直接通过eth0和eth1上的网卡直接传送IP包。

第三行表示,如果是前面两行之外的IP地址,则需要通过eth1,送往199.165.146.8(右边的router)。

我们的目的地符合第二行,所以将IP放入一个新的帧中,

在帧的头部写上199.165.146.21的MAC地址,直接发往主机146.21。

(在Linux下,可以使用$route -n来查看routing table)

IP包可以进一步接力,到达更远的主机。IP包从主机出发,根据沿途路由器的routing table指导,在router间接力。IP包最终到达某个router,这个router与目标主机位于一个局域网中,可以直接建立连接层的通信。最后,IP包被送到目标主机。这样一个过程叫做routing(我们就叫IP包接力好了,路由这个词实在是混合了太多的意思)。

整个过程中,IP包不断被主机和路由封装入帧(信封)并拆开,然后借助连接层,在局域网的各个NIC之间传送帧。整个过程中,我们的IP包的内容保持完整,没有发生变化。最终的效果是一个IP包从一个主机传送到另一个主机。利用IP包,我们不需要去操心底层(比如连接层)发生了什么。

在上面的过程中,我们实际上假设了,每一台主机和路由都能了解局域网内的IP地址和MAC地址的对应关系,这是实现IP包封装(encapsulation)到帧的基本条件。IP地址与MAC地址的对应是通过ARP协议传播到局域网的每个主机和路由。每一台主机或路由中都有一个ARP cache,用以存储局域网内IP地址和MAC地址如何对应。

ARP协议(ARP介于连接层和网络层之间,ARP包需要包裹在一个帧中)的工作方式如下:主机会发出一个ARP包,该ARP包中包含有自己的IP地址和MAC地址。通过ARP包,主机以广播的形式询问局域网上所有的主机和路由:我是IP地址xxxx,我的MAC地址是xxxx,有人知道199.165.146.4的MAC地址吗?拥有该IP地址的主机会回复发出请求的主机:哦,我知道,这个IP地址属于我的一个NIC,它的MAC地址是xxxxxx。由于发送ARP请求的主机采取的是广播形式,并附带有自己的IP地址和MAC地址,其他的主机和路由会同时检查自己的ARP cache,如果不符合,则更新自己的ARP cache。

这样,经过几次ARP请求之后,ARP cache会达到稳定。如果局域网上设备发生变动,ARP重复上面过程。

(在Linux下,可以使用$arp命令来查看ARP的过程。ARP协议只用于IPv4。IPv6使用Neighbor Discovery Protocol来替代ARP的功能。)

我们还有另一个假设,就是每个主机和路由上都已经有了合理的routing table。这个routint table描述了网络的拓扑(topology)结构。如果你了解自己的网络连接,可以手写自己主机的routing table。但是,一个路由器可能有多个出口,所以routing table可能会很长。更重要的是,周围连接的其他路由器可能发生变动(比如新增路由器或者路由器坏掉),我们就需要routing table能及时将交通导向其他的出口。我们需要一种更加智能的探测周围的网络拓扑结构,并自动生成routing table。

我们以北京地铁为例子。如果从机场前往朝阳门,那么可以采取2号航站楼-三元桥-东直门-朝阳门。2号航站楼和朝阳门分别是出发和目的主机。而三元桥和东直门为中间的两个router。如果三元桥-东直门段因为维修停运,我们需要更改三元桥的routing table,从而给前往朝阳门的乘客(IP包)指示:请走如下路线三元桥-芍药居。然后依照芍药居的routing table前往朝阳门(芍药居-东直门-朝阳门)。

一种用来生成routing table的协议是RIP(Routing Information Protocol)。它通过距离来决定routing table,所以属于distance-vector protocol。对于RIP来说,所谓的距离是从出发地到目的地途径的路由器数目(hop number)。比如上面从机场到朝阳门,按照2号航站楼-三元桥-东直门-朝阳门路线,途径两个路由器,距离为2。我们最初可以手动生成三元桥的routing table。随后,根据RIP协议,三元桥向周围的路由器和主机广播自己前往各个IP的距离(比如到机场=0,团结湖=0,国贸=1,望京西=1,建国门=2)。收到RIP包的路由器和主机根据RIP包和自己到发送RIP包的主机的距离,算出自己前往各个IP的距离。东直门与三元桥的距离为1。东直门收到三元桥的RIP包(到机场的距离为0),那么东直门途径三元桥前往机场的距离为1+0=1。如果东直门自己的RIP记录都比这个远(比如东直门-芍药居-三元桥-机场 = 2)。那么东直门更改自己的routing table:前往机场的交通都发往三元桥而不是芍药居。如果东直门自身的RIP记录并不差,那么东直门保持routing table不变。上述过程在各个点不断重复RIP广播/计算距离/更新routing table的过程,最终所有的主机和路由器都能生成最合理的路径(merge)。

(RIP的基本逻辑是:如果A距离B为6,而我距离A为1,那么我途径A到B的距离为7)

RIP出于技术上的原因(looping hops),认为距离超过15的IP不可到达。所以RIP更多用于互联网的一部分(比如整个中国电信的网络)。这样一个互联网的部分往往属于同一个ISP或者有同一个管理机构,所以叫做自治系统(AS,autonomous system)。自治系统内部的主机和路由根据通向外部的边界路由器来和其它的自治系统通信。各个边界路由器之间通过BGP(Border Gateway Protocol)来生成自己前往其它AS的routing table,而自治系统内部则参照边界路由器,使用RIP来决定routing table。BGP的基本工作过程与RIP类似,但在考虑距离的同时,也权衡比如政策、连接性能等其他因素,再决定交通的走向(routing table)。

我们一开始讲述了IP包根据routing table进行接力的过程。为了顺利实现接力,我们又进一步深入到ARP和RIP/BGP。这三个协议都协助了IP传输。ARP让每台电脑和路由器知道自己局域网内IP地址和MAC地址的对应关系,从而顺利实现IP包到帧的封装。RIP协议可以生成自治系统内部合理的routing table。BGP协议可以生成自治系统外部的routing table。

在整个过程中,我们都将注意力放在了IP包大的传输过程中,而故意忽略一些细节。 而上面的IP接力过程适用于IPv6。

【TCP/IP详解】系列教程

互联网协议入门 1

互联网协议入门 2

TCP-IP协议详解(1)网络协议概观

TCP-IP协议详解(2) 以太网与WiFi协议

TCP-IP协议详解(3) IP/ARP/RIP/BGP协议

TCP-IP协议详解(4)IPv4与IPv6地址

TCP-IP协议详解(5)IP协议详解

TCP-IP协议详解(6) ICMP协议

TCP-IP协议详解(7) UDP协议

TCP-IP协议详解(8) TCP协议与流通信

TCP-IP协议详解(9) TCP连接

TCP-IP协议详解(10) TCP滑窗管理

TCP-IP协议详解(11) TCP重传

TCP-IP协议详解(12) TCP堵塞控制

TCP-IP协议详解(13) DNS协议

TCP-IP协议详解(14) CIDR与NAT

TCP-IP协议详解(15) HTTP协议概览

图解TCP-IP协议

linux多网卡添加arp

.首先给虚拟机设置2块网卡:

2、关闭系统中的NetworkManager:

3、编辑文件/etc/modprobe.d/dist.conf添加alias bond0 bonding:

4、修改/etc/sysconfig/network-scripts中的ifcfg-eth0 ifcfg-eth1并创建bond0:

miimon是指多久时间要检查网路一次,单位是ms(毫秒)

mode=0:平衡负载模式,两块网卡都在工作,负载均衡。

mode=1:自动主备模式,其中一块网卡在工作(若eth0断掉)

则自动切换到另一个块网卡(eth1做备份)实验结果:

1、重启网络.service network restart,或者计算机。

2、用另外一台虚拟机ping网卡绑定后的主机。

3、任意ipdown任意网卡,网络通讯均不受影响。

对于网络负载均衡是我们在文件服务器中常用到的,比如把三块网卡,当做一块来用,解决一个IP地址,流量过大,服务器网络压力过大的问题。 对于文件服务器来说,比如NFS或SAMBA文件服务器,没有任何一个管理员会把内部网的文件服务器的IP地址弄很多个来解决网络负载的问题。

如果在内网中,文件服务器为了管理和应用上的方便,大多是用同一个IP地址。对于一个百M的本地网络来说,文件服务器在多个用户同时使用的情况下,网络压力是极大的,特别是SAMABA和NFS服务器。为了解决同一个IP地址,突破流量的限制,毕竟网线和网卡对数据的吞吐量是有限制的。如果在有限的资源的情况下,实现网络负载均衡. 网卡

操作步骤: 1.首先给虚拟机设置2块网卡:

添加网卡

2、关闭系统中的NetworkManager:

关闭NetWorkManager服务

3、编辑文件/etc/modprobe.d/dist.conf添加alias bond0 bonding: 编辑网卡绑定配置文件

4、修改/etc/sysconfig/network-scripts中的ifcfg-eth0 ifcfg-eth1并创建bond0: 创建bond0

miimon是指多久时间要检查网路一次,单位是ms(毫秒) mode=0:平衡负载模式,两块网卡都在工作,负载均衡。 mode=1:自动主备模式,其中一块网卡在工作(若eth0断掉)

则自动切换到另一个块网卡(eth1做备份)实验结果:

1、重启网络.service network restart,或者计算机。

2、用另外一台虚拟机ping网卡绑定后的主机。

3、任意ipdown任意网卡,网络通讯均不受影响。使用bind绑定多个网卡

由于服务器上对于可用性的要求都比较高,对于各项功能都会有有冗余设计,比如,磁盘、电源、网卡、甚至服务器本身等等,今天尝试做一下网卡绑定实现网卡的冗余。

网卡绑定的实现表面上看起来有些像是硬盘实现逻辑卷,都是通过创建一个逻辑设备来实现的。实现网卡的绑定其实还挺简单的,相比逻辑卷更容易理解。

首先,我们在/etc/sysconfig/network-scripts/目录下创建一个文件,文件名通常会叫ifcfg-bondxx,除了ifcfg-后面的内容其实都是可以自己定义的,但通常都会写成bind之类的,文件的内容其实和普通网卡配置文件的内容是一样的,就像这样第一行的DEVICE是你给这个逻辑设备指定的名字,这个名字得和文件名的后半部分一样。

第二行是指定IP的获取方式,你也可以写dhcp让他自动获取,如果是自动获取,那么IPADDR、GATEWAY和PREFIX都不需要再填

最后一行是比较重要的,必须得填,这个是绑定网卡的选项,mode代表绑定网卡的工作模式,miimon是一个时间间隔,代表备份网卡每隔多久查询一次工作网卡的工作情况。单位是ms

以上只是第一步,逻辑网卡已经创建好了,下面就要指定那些网卡属于这个逻辑网卡了。也很简单,只要把你想加入这个逻辑网卡的物理网卡的配置文件稍微修改一下就可以了。就像这样


当前文章:Linux查看ARP命令 linux中arp命令
本文路径:http://hbruida.cn/article/ddohcdi.html