go语言内存屏障 go内存布局
面试问题总结(一)Golang
使用go语言的好处: go语言的设计是务实的, go在针对并发上进行了优化, 并且支持大规模高并发, 又由于单一的码格式, 相比于其他语言更具有可读性, 在垃圾回收上比java和Python更有效, 因为他是和程序同时执行的.
网站的建设成都创新互联公司专注网站定制,经验丰富,不做模板,主营网站定制开发.小程序定制开发,H5页面制作!给你焕然一新的设计体验!已为阳台护栏等企业提供专业服务。
1. 进程, 线程, 协程的区别, 协程的优势
2. 讲一下GMP模型(重点)
3. Go的GC, 混合写屏障(重点)
4. go的Slice和数组的区别, slice的扩容原理(重点)
5. 讲一下channel,实现原理(重点)
6. 讲一下Go的Map的实现原理, 是否线程安全, 如何实现安全(重点)
7. new 和 make 的区别
8. 说一下内存逃逸
9. 函数传指针和传值有什么区别
10. goroutine之间的通信方式
11. 测试是怎么做的(单元测试, 压力测试)
12. 堆和栈的区别
go 语言中的 rune
rune是Go语言中一种特殊的数据类型,它是int32的别名,几乎在所有方面等同于int32,用于区分字符值和整数值,官方解释如下:
下面我们通过一个例子来看一下:
我们猜测一下结果,hello5 个字符+1 个空格+3 个汉子,算起来应该是 9 个,长度为 9 才对,但是我们执行一下,
结果打印是 15,这是为什么呢?
所以计算出的长度就等于 5+1+3*3=15
如果我们需要计算出字符串的长度,而不是底层字节的个数,那么可以使用下面的方法:
运行结果如下:
在 rune 定义上方还有一个,byte = uint8
Go 语言内存管理(三):逃逸分析
Go 语言较之 C 语言一个很大的优势就是自带 GC 功能,可 GC 并不是没有代价的。写 C 语言的时候,在一个函数内声明的变量,在函数退出后会自动释放掉,因为这些变量分配在栈上。如果你期望变量的数据可以在函数退出后仍然能被访问,就需要调用 malloc 方法在堆上申请内存,如果程序不再需要这块内存了,再调用 free 方法释放掉。Go 语言不需要你主动调用 malloc 来分配堆空间,编译器会自动分析,找出需要 malloc 的变量,使用堆内存。编译器的这个分析过程就叫做逃逸分析。
所以你在一个函数中通过 dict := make(map[string]int) 创建一个 map 变量,其背后的数据是放在栈空间上还是堆空间上,是不一定的。这要看编译器分析的结果。
可逃逸分析并不是百分百准确的,它有缺陷。有的时候你会发现有些变量其实在栈空间上分配完全没问题的,但编译后程序还是把这些数据放在了堆上。如果你了解 Go 语言编译器逃逸分析的机制,在写代码的时候就可以有意识地绕开这些缺陷,使你的程序更高效。
Go 语言虽然在内存管理方面降低了编程门槛,即使你不了解堆栈也能正常开发,但如果你要在性能上较真的话,还是要掌握这些基础知识。
这里不对堆内存和栈内存的区别做太多阐述。简单来说就是, 栈分配廉价,堆分配昂贵。 栈空间会随着一个函数的结束自动释放,堆空间需要时间 GC 模块不断地跟踪扫描回收。如果对这两个概念有些迷糊,建议阅读下面 2 个文章:
这里举一个小例子,来对比下堆栈的差别:
stack 函数中的变量 i 在函数退出会自动释放;而 heap 函数返回的是对变量 i 的引用,也就是说 heap() 退出后,表示变量 i 还要能被访问,它会自动被分配到堆空间上。
他们编译出来的代码如下:
逻辑的复杂度不言而喻,从上面的汇编中可看到, heap() 函数调用了 runtime.newobject() 方法,它会调用 mallocgc 方法从 mcache 上申请内存,申请的内部逻辑前面文章已经讲述过。堆内存分配不仅分配上逻辑比栈空间分配复杂,它最致命的是会带来很大的管理成本,Go 语言要消耗很多的计算资源对其进行标记回收(也就是 GC 成本)。
Go 编辑器会自动帮我们找出需要进行动态分配的变量,它是在编译时追踪一个变量的生命周期,如果能确认一个数据只在函数空间内访问,不会被外部使用,则使用栈空间,否则就要使用堆空间。
我们在 go build 编译代码时,可使用 -gcflags '-m' 参数来查看逃逸分析日志。
以上面的两个函数为例,编译的日志输出是:
日志中的 i escapes to heap 表示该变量数据逃逸到了堆上。
需要使用堆空间,所以逃逸,这没什么可争议的。但编译器有时会将 不需要 使用堆空间的变量,也逃逸掉。这里是容易出现性能问题的大坑。网上有很多相关文章,列举了一些导致逃逸情况,其实总结起来就一句话:
多级间接赋值容易导致逃逸 。
这里的多级间接指的是,对某个引用类对象中的引用类成员进行赋值。Go 语言中的引用类数据类型有 func , interface , slice , map , chan , *Type(指针) 。
记住公式 Data.Field = Value ,如果 Data , Field 都是引用类的数据类型,则会导致 Value 逃逸。这里的等号 = 不单单只赋值,也表示参数传递。
根据公式,我们假设一个变量 data 是以下几种类型,相应的可以得出结论:
下面给出一些实际的例子:
如果变量值是一个函数,函数的参数又是引用类型,则传递给它的参数都会逃逸。
上例中 te 的类型是 func(*int) ,属于引用类型,参数 *int 也是引用类型,则调用 te(j) 形成了为 te 的参数(成员) *int 赋值的现象,即 te.i = j 会导致逃逸。代码中其他几种调用都没有形成 多级间接赋值 情况。
同理,如果函数的参数类型是 slice , map 或 interface{} 都会导致参数逃逸。
匿名函数的调用也是一样的,它本质上也是一个函数变量。有兴趣的可以自己测试一下。
只要使用了 Interface 类型(不是 interafce{} ),那么赋值给它的变量一定会逃逸。因为 interfaceVariable.Method() 先是间接的定位到它的实际值,再调用实际值的同名方法,执行时实际值作为参数传递给方法。相当于 interfaceVariable.Method.this = realValue
向 channel 中发送数据,本质上就是为 channel 内部的成员赋值,就像给一个 slice 中的某一项赋值一样。所以 chan *Type , chan map[Type]Type , chan []Type , chan interface{} 类型都会导致发送到 channel 中的数据逃逸。
这本来也是情理之中的,发送给 channel 的数据是要与其他函数分享的,为了保证发送过去的指针依然可用,只能使用堆分配。
可变参数如 func(arg ...string) 实际与 func(arg []string) 是一样的,会增加一层访问路径。这也是 fmt.Sprintf 总是会使参数逃逸的原因。
例子非常多,这里不能一一列举,我们只需要记住分析方法就好,即,2 级或更多级的访问赋值会 容易 导致数据逃逸。这里加上 容易 二字是因为随着语言的发展,相信这些问题会被慢慢解决,但现阶段,这个可以作为我们分析逃逸现象的依据。
下面代码中包含 2 种很常规的写法,但他们却有着很大的性能差距,建议自己想下为什么。
Benchmark 和 pprof 给出的结果:
熟悉堆栈概念可以让我们更容易看透 Go 程序的性能问题,并进行优化。
多级间接赋值会导致 Go 编译器出现不必要的逃逸,在一些情况下可能我们只需要修改一下数据结构就会使性能有大幅提升。这也是很多人不推荐在 Go 中使用指针的原因,因为它会增加一级访问路径,而 map , slice , interface{} 等类型是不可避免要用到的,为了减少不必要的逃逸,只能拿指针开刀了。
大多数情况下,性能优化都会为程序带来一定的复杂度。建议实际项目中还是怎么方便怎么写,功能完成后通过性能分析找到瓶颈所在,再对局部进行优化。
【golang】内存逃逸常见情况和避免方式
因为如果变量的内存发生逃逸,它的生命周期就是不可知的,其会被分配到堆上,而堆上分配内存不能像栈一样会自动释放,为了解放程序员双手,专注于业务的实现,go实现了gc垃圾回收机制,但gc会影响程序运行性能,所以要尽量减少程序的gc操作。
1、在方法内把局部变量指针返回,被外部引用,其生命周期大于栈,则溢出。
2、发送指针或带有指针的值到channel,因为编译时候无法知道那个goroutine会在channel接受数据,编译器无法知道什么时候释放。
3、在一个切片上存储指针或带指针的值。比如[]*string,导致切片内容逃逸,其引用值一直在堆上。
4、因为切片的append导致超出容量,切片重新分配地址,切片背后的存储基于运行时的数据进行扩充,就会在堆上分配。
5、在interface类型上调用方法,在Interface调用方法是动态调度的,只有在运行时才知道。
1、go语言的接口类型方法调用是动态,因此不能在编译阶段确定,所有类型结构转换成接口的过程会涉及到内存逃逸发生,在频次访问较高的函数尽量调用接口。
2、不要盲目使用变量指针作为参数,虽然减少了复制,但变量逃逸的开销更大。
3、预先设定好slice长度,避免频繁超出容量,重新分配。
标题名称:go语言内存屏障 go内存布局
本文路径:http://hbruida.cn/article/ddgsehp.html