go语言libp2p,Go语言圣经
如何看待go语言泛型的最新设计?
Go 由于不支持泛型而臭名昭著,但最近,泛型已接近成为现实。Go 团队实施了一个看起来比较稳定的设计草案,并且正以源到源翻译器原型的形式获得关注。本文讲述的是泛型的最新设计,以及如何自己尝试泛型。
专注于为中小企业提供成都做网站、网站设计服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业环江免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上1000家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
例子
FIFO Stack
假设你要创建一个先进先出堆栈。没有泛型,你可能会这样实现:
type Stack []interface{}func (s Stack) Peek() interface{} {
return s[len(s)-1]
}
func (s *Stack) Pop() {
*s = (*s)[:
len(*s)-1]
}
func (s *Stack) Push(value interface{}) {
*s =
append(*s, value)
}
但是,这里存在一个问题:每当你 Peek 项时,都必须使用类型断言将其从 interface{} 转换为你需要的类型。如果你的堆栈是 *MyObject 的堆栈,则意味着很多 s.Peek().(*MyObject)这样的代码。这不仅让人眼花缭乱,而且还可能引发错误。比如忘记 * 怎么办?或者如果您输入错误的类型怎么办?s.Push(MyObject{})` 可以顺利编译,而且你可能不会发现到自己的错误,直到它影响到你的整个服务为止。
通常,使用 interface{} 是相对危险的。使用更多受限制的类型总是更安全,因为可以在编译时而不是运行时发现问题。
泛型通过允许类型具有类型参数来解决此问题:
type Stack(type T) []Tfunc (s Stack(T)) Peek() T {
return s[len(s)-1]
}
func (s *Stack(T)) Pop() {
*s = (*s)[:
len(*s)-1]
}
func (s *Stack(T)) Push(value T) {
*s =
append(*s, value)
}
这会向 Stack 添加一个类型参数,从而完全不需要 interface{}。现在,当你使用 Peek() 时,返回的值已经是原始类型,并且没有机会返回错误的值类型。这种方式更安全,更容易使用。(译注:就是看起来更丑陋,^-^)
此外,泛型代码通常更易于编译器优化,从而获得更好的性能(以二进制大小为代价)。如果我们对上面的非泛型代码和泛型代码进行基准测试,我们可以看到区别:
type MyObject struct {
X
int
}
var sink MyObjectfunc BenchmarkGo1(b *testing.B) {
for i := 0; i b.N; i++ {
var s Stack
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink = s.Peek().(MyObject)
}
}
func BenchmarkGo2(b *testing.B) {
for i := 0; i b.N; i++ {
var s Stack(MyObject)
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink = s.Peek()
}
}
结果:
BenchmarkGo1BenchmarkGo1-16 12837528 87.0 ns/op 48 B/op 2 allocs/opBenchmarkGo2BenchmarkGo2-16 28406479 41.9 ns/op 24 B/op 2 allocs/op
在这种情况下,我们分配更少的内存,同时泛型的速度是非泛型的两倍。
合约(Contracts)
上面的堆栈示例适用于任何类型。但是,在许多情况下,你需要编写仅适用于具有某些特征的类型的代码。例如,你可能希望堆栈要求类型实现 String() 函数
IPFS(四) 源码解读之-p2p
package p2p
import (
"context"
"errors"
"time"
net "gx/ipfs/QmPjvxTpVH8qJyQDnxnsxF9kv9jezKD1kozz1hs3fCGsNh/go-libp2p-net"
manet "gx/ipfs/QmV6FjemM1K8oXjrvuq3wuVWWoU2TLDPmNnKrxHzY3v6Ai/go-multiaddr-net"
ma "gx/ipfs/QmYmsdtJ3HsodkePE3eU3TsCaP2YvPZJ4LoXnNkDE5Tpt7/go-multiaddr"
pro "gx/ipfs/QmZNkThpqfVXs9GNbexPrfBbXSLNYeKrE7jwFM2oqHbyqN/go-libp2p-protocol"
pstore "gx/ipfs/QmZR2XWVVBCtbgBWnQhWk2xcQfaR3W8faQPriAiaaj7rsr/go-libp2p-peerstore"
p2phost "gx/ipfs/Qmb8T6YBBsjYsVGfrihQLfCJveczZnneSBqBKkYEBWDjge/go-libp2p-host"
peer "gx/ipfs/QmdVrMn1LhB4ybb8hMVaMLXnA8XRSewMnK6YqXKXoTcRvN/go-libp2p-peer"
)
//P2P结构保存当前正在运行的流/监听器的信息
// P2P structure holds information on currently running streams/listeners
type P2P struct {
//监听器
Listeners ListenerRegistry
//数据流
Streams StreamRegistry
//节点ID
identity peer.ID
//节点地址
peerHost p2phost.Host
//一个线程安全的对等节点存储
peerstore pstore.Peerstore
}
//创建一个新的p2p结构
// NewP2P creates new P2P struct
//这个新的p2p结构不包含p2p结构中的监听器和数据流
func NewP2P(identity peer.ID, peerHost p2phost.Host, peerstore pstore.Peerstore) *P2P {
return P2P{
identity: identity,
peerHost: peerHost,
peerstore: peerstore,
}
}
//新建一个数据流 工具方法 构建一个有节点id,内容和协议的流
func (p2p P2P) newStreamTo(ctx2 context.Context, p peer.ID, protocol string) (net.Stream, error) {
//30s 后会自动timeout
ctx, cancel := context.WithTimeout(ctx2, time.Second 30) //TODO: configurable?
defer cancel()
err := p2p.peerHost.Connect(ctx, pstore.PeerInfo{ID: p})
if err != nil {
return nil, err
}
return p2p.peerHost.NewStream(ctx2, p, pro.ID(protocol))
}
//对话为远程监听器创建新的P2P流
//创建一个新的p2p流实现对对话的监听
// Dial creates new P2P stream to a remote listener
//Multiaddr是一种跨协议、跨平台的表示格式的互联网地址。它强调明确性和自我描述。
//对内接收
func (p2p P2P) Dial(ctx context.Context, addr ma.Multiaddr, peer peer.ID, proto string, bindAddr ma.Multiaddr) ( ListenerInfo, error) {
//获取一些节点信息 network, host, nil
lnet, _, err := manet.DialArgs(bindAddr)
if err != nil {
return nil, err
}
//监听信息
listenerInfo := ListenerInfo{
//节点身份
Identity: p2p.identity,
////应用程序协议标识符。
Protocol: proto,
}
//调用newStreamTo 通过ctx(内容) peer(节点id) proto(协议标识符) 参数获取一个新的数据流
remote, err := p2p.newStreamTo(ctx, peer, proto)
if err != nil {
return nil, err
}
//network协议标识
switch lnet {
//network为"tcp", "tcp4", "tcp6"
case "tcp", "tcp4", "tcp6":
//从监听器获取新的信息 nla.Listener, nil
listener, err := manet.Listen(bindAddr)
if err != nil {
if err2 := remote.Reset(); err2 != nil {
return nil, err2
}
return nil, err
}
//将获取的新信息保存到listenerInfo
listenerInfo.Address = listener.Multiaddr()
listenerInfo.Closer = listener
listenerInfo.Running = true
//开启接受
go p2p.doAccept(listenerInfo, remote, listener)
default:
return nil, errors.New("unsupported protocol: " + lnet)
}
return listenerInfo, nil
}
//
func (p2p *P2P) doAccept(listenerInfo *ListenerInfo, remote net.Stream, listener manet.Listener) {
//关闭侦听器并删除流处理程序
defer listener.Close()
//Returns a Multiaddr friendly Conn
//一个有好的 Multiaddr 连接
local, err := listener.Accept()
if err != nil {
return
}
stream := StreamInfo{
//连接协议
Protocol: listenerInfo.Protocol,
//定位节点
LocalPeer: listenerInfo.Identity,
//定位节点地址
LocalAddr: listenerInfo.Address,
//远程节点
RemotePeer: remote.Conn().RemotePeer(),
//远程节点地址
RemoteAddr: remote.Conn().RemoteMultiaddr(),
//定位
Local: local,
//远程
Remote: remote,
//注册码
Registry: p2p.Streams,
}
//注册连接信息
p2p.Streams.Register(stream)
//开启节点广播
stream.startStreaming()
}
//侦听器将流处理程序包装到侦听器中
// Listener wraps stream handler into a listener
type Listener interface {
Accept() (net.Stream, error)
Close() error
}
//P2PListener保存关于侦听器的信息
// P2PListener holds information on a listener
type P2PListener struct {
peerHost p2phost.Host
conCh chan net.Stream
proto pro.ID
ctx context.Context
cancel func()
}
//等待侦听器的连接
// Accept waits for a connection from the listener
func (il *P2PListener) Accept() (net.Stream, error) {
select {
case c := -il.conCh:
return c, nil
case -il.ctx.Done():
return nil, il.ctx.Err()
}
}
//关闭侦听器并删除流处理程序
// Close closes the listener and removes stream handler
func (il *P2PListener) Close() error {
il.cancel()
il.peerHost.RemoveStreamHandler(il.proto)
return nil
}
// Listen创建新的P2PListener
// Listen creates new P2PListener
func (p2p P2P) registerStreamHandler(ctx2 context.Context, protocol string) ( P2PListener, error) {
ctx, cancel := context.WithCancel(ctx2)
list := P2PListener{
peerHost: p2p.peerHost,
proto: pro.ID(protocol),
conCh: make(chan net.Stream),
ctx: ctx,
cancel: cancel,
}
p2p.peerHost.SetStreamHandler(list.proto, func(s net.Stream) {
select {
case list.conCh - s:
case -ctx.Done():
s.Reset()
}
})
return list, nil
}
// NewListener创建新的p2p侦听器
// NewListener creates new p2p listener
//对外广播
func (p2p P2P) NewListener(ctx context.Context, proto string, addr ma.Multiaddr) ( ListenerInfo, error) {
//调用registerStreamHandler 构造一个新的listener
listener, err := p2p.registerStreamHandler(ctx, proto)
if err != nil {
return nil, err
}
//构造新的listenerInfo
listenerInfo := ListenerInfo{
Identity: p2p.identity,
Protocol: proto,
Address: addr,
Closer: listener,
Running: true,
Registry: p2p.Listeners,
}
go p2p.acceptStreams(listenerInfo, listener)
//注册连接信息
p2p.Listeners.Register(listenerInfo)
return listenerInfo, nil
}
//接受流
func (p2p *P2P) acceptStreams(listenerInfo *ListenerInfo, listener Listener) {
for listenerInfo.Running {
//一个有好的 远程 连接
remote, err := listener.Accept()
if err != nil {
listener.Close()
break
}
}
//取消注册表中的p2p侦听器
p2p.Listeners.Deregister(listenerInfo.Protocol)
}
// CheckProtoExists检查是否注册了协议处理程序
// mux处理程序
// CheckProtoExists checks whether a protocol handler is registered to
// mux handler
func (p2p *P2P) CheckProtoExists(proto string) bool {
protos := p2p.peerHost.Mux().Protocols()
for _, p := range protos {
if p != proto {
continue
}
return true
}
return false
}
区块链技术想要快速入门,一般涉及哪些编程语言?
任何一门计算机语言,都能在特定某个领域的应用中,实现区块链技术;
具体使用哪一门语言,完全看我们相应领域行业企业项目的技术要求,以及更关键的:跟已有信息系统的有效对接联通。
区块链具有自下而上生成记录,生成两方或多方合同类记录,加入第三方确认机制,分布存储,……等特点;
从而让它相比集中式的存储运算而言,变得更为可信。
常见的总统投票,就非常适合以区块链技术重新架构;采用区块链技术的投票系统,能够避免哪一家技术公司、某一个关键技术人员,操纵选票统计结果的可能。
像我们的法院证据,也特别适合采用区块链技术重新架构开发。
其实像当前我们各类互联网时代的“版权系统”,它们中一些就是采用区块链技术架构而来,只不过,目前我们的新闻出版局、专利局(或者更广义地被称作“专家评委”),都尚未接入这些由互联网公司创新而来的版权平台。
我们耳熟能详 的“法大大”(虽然名字不甚好听、甚至乍一听来有些让人“摸不着头脑”),它也其实正准备采用最新的区块链技术重新架构;采用区块链技术的合同平台,因为变得更加可信,也才能更便于互联网时代人们签订各类商务合同。
还有像我们的“征信系统”,也非常适合以区块链技术加以改造。能够让它更有说服力,而不致于出现一家单位、乃至随意某个关键技术人员,能随意往其中添加“征信污点数据”的情况。
还有像我们的P2P贷款,如果能够以区块链技术重新架构的话,也能够变得更加可信,而不致于出现违约、卷款跑路这样的失信情况。
IPFS 一个分布式系统,用于存储和访问文件、网站、应用程序和数据
《开源精选》是我们分享Github、Gitee等开源社区中优质项目的栏目,包括技术、学习、实用与各种有趣的内容。本期推荐的IPFS 是一个分布式系统,用于存储和访问文件、网站、应用程序和数据。
而且,当您使用 IPFS 时,您不只是从其他人那里下载文件——您的计算机也有助于分发它们。当您在几个街区外的朋友需要相同的 Wikipedia 页面时,他们可能会像从您的邻居或任何使用 IPFS 的人那里一样从您那里获得它。
IPFS 不仅可以用于网页,还可以用于计算机可能存储的任何类型的文件,无论是文档、电子邮件,甚至是数据库记录。
可以从不由一个组织管理的多个位置下载文件:
最后一点实际上是 IPFS 的全名: InterPlanetary File System 。我们正在努力建立一个系统,该系统可以在不连贯或相隔很远的地方工作,就像行星一样。虽然这是一个理想主义的目标,但它让我们努力工作和思考,几乎我们为实现这一目标而创造的一切在家里也很有用。
IPFS 是一个点对点 (p2p) 存储网络。可以通过位于世界任何地方的对等点访问内容,这些对等点可能会传递信息、存储信息或两者兼而有之。IPFS 知道如何使用其内容地址而不是其位置来查找您要求的内容。
理解 IPFS 的三个基本原则:
这三个原则相互依赖,以启用 IPFS 生态系统。让我们从 内容寻址 和内容的唯一标识开始。
互联网和您的计算机上都存在这个问题!现在,内容是按位置查找的,例如:
相比之下,每条使用 IPFS 协议的内容都有一个 内容标识符 ,即 CID,即其 哈希值 。散列对于它所来自的内容来说是唯一的,即使它与原始内容相比可能看起来很短。
有向无环图 (DAG)
IPFS 和许多其他分布式系统利用称为有向无环图的数据结构 (打开新窗口),或 DAG。具体来说,他们使用 Merkle DAG ,其中每个节点都有一个唯一标识符,该标识符是节点内容的哈希。
IPFS 使用针对表示目录和文件进行了优化的 Merkle DAG,但您可以通过多种不同的方式构建 Merkle DAG。例如,Git 使用 Merkle DAG,其中包含许多版本的存储库。
为了构建内容的 Merkle DAG 表示,IPFS 通常首先将其拆分为 块 。将其拆分为块意味着文件的不同部分可以来自不同的来源并可以快速进行身份验证。
分布式哈希表 (DHT)
要查找哪些对等方正在托管您所追求的内容( 发现 ),IPFS 使用分布式哈希表或 DHT。哈希表是值键的数据库。 分布式 哈希表是一种表在分布式网络中的所有对等方之间拆分的表。要查找内容,您需要询问这些同行。
libp2p项目 (打开新窗口)是 IPFS 生态系统的一部分,它提供 DHT 并处理对等点之间的连接和交谈。
一旦你知道你的内容在哪里(或者更准确地说,哪些对等点正在存储构成你所追求的内容的每个块),你就可以再次使用 DHT 来查找这些对等点的当前位置( 路由 )。因此,要获取内容,请使用 libp2p 查询 DHT 两次。
然而,这确实意味着 IPFS 本身并没有明确保护 有关 CID 和提供或检索它们的节点的知识。这不是分布式网络所独有的。在 d-web 和 legacy web 上,流量和其他元数据都可以通过可以推断出很多关于网络及其用户的方式进行监控。下面概述了这方面的一些关键细节,但简而言之:虽然 节点之间 的 IPFS 流量是加密的,但这些节点发布到 DHT 的元数据是公开的。节点宣布对 DHT 功能至关重要的各种信息——包括它们的唯一节点标识符 (PeerID) 和它们提供的数据的 CID——因此,关于哪些节点正在检索和/或重新提供哪些 CID 的信息是公开的可用的。
加密
网络中有两种类型的加密: 传输加密 和 内容加密 。
在两方之间发送数据时使用传输加密。阿尔伯特加密文件并将其发送给莱卡,莱卡在收到文件后对其进行解密。这会阻止第三方在数据从一个地方移动到另一个地方时查看数据。
内容加密用于保护数据,直到有人需要访问它。Albert 为他的每月预算创建了一个电子表格,并用密码保存它。当 Albert 需要再次访问它时,他必须输入密码才能解密文件。没有密码,Laika 无法查看该文件。
IPFS 使用传输加密,但不使用内容加密。这意味着您的数据在从一个 IPFS 节点发送到另一个节点时是安全的。但是,如果拥有 CID,任何人都可以下载和查看该数据。缺乏内容加密是一个有意的决定。您可以自由选择最适合您的项目的方法,而不是强迫您使用特定的加密协议。
如果您精通命令行并且只想立即启动并运行 IPFS,请遵循此快速入门指南。请注意,本指南假定您将安装 go-ipfs,这是用 Go 编写的参考实现。
ipfs将其所有设置和内部数据存储在称为 存储库的目录中。 在第一次使用 IPFS 之前,您需要使用以下ipfs init命令初始化存储库:
如果您在数据中心的服务器上运行,则应使用server配置文件初始化 IPFS。这样做会阻止 IPFS 创建大量数据中心内部流量来尝试发现本地节点:
您可能需要设置大量其他配置选项 — 查看完整参考 (打开新窗口)更多。
后面的散列peer identity:是您节点的 ID,与上面输出中显示的不同。网络上的其他节点使用它来查找并连接到您。如果需要,您可以随时运行ipfs id以再次获取它。
现在,尝试运行在ipfs init. 那个样子ipfs cat /ipfs/ /readme。
您应该看到如下内容:
您可以 探索 存储库中的其他对象。特别是quick-start显示示例命令尝试的目录:
准备好将节点加入公共网络后,在另一个终端中运行 ipfs 守护程序,并等待以下所有三行显示您的节点已准备好:
记下您收到的 TCP 端口。如果它们不同,请在下面的命令中使用您的。
现在,切换回原来的终端。如果您已连接到网络,您应该能够在运行时看到对等方的 IPFS 地址:
这些是 /p2p/ .
现在,您应该能够从网络中获取对象了。尝试:
使用上述命令,IPFS 在网络中搜索 CIDQmSgv...并将数据写入spaceship-launch.jpg桌面上调用的文件中。
接下来,尝试将对象发送到网络,然后在您喜欢的浏览器中查看它。以下示例curl用作浏览器,但您也可以在其他浏览器中打开 IPFS URL:
您可以通过转到 来查看本地节点上的 Web 控制台localhost:5001/webui。这应该会弹出一个这样的控制台:
Web 控制台显示可变文件系统 (MFS)中的文件。MFS 是内置于 Web 控制台的工具,可帮助您以与基于名称的文件系统相同的方式导航 IPFS 文件。
当您使用CLI 命令ipfs add ...添加文件时,这些文件不会自动在 MFS 中可用。要查看您使用 CLI 添加的 IPFS 桌面中的文件,您必须将文件复制到 MFS:
—END—
开源协议:MIT License
开源地址:
网页名称:go语言libp2p,Go语言圣经
网页网址:http://hbruida.cn/article/hecsjs.html